首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Sorption of Cd(2+), Cr(3+), Cu(2+), Ni(2+), Pb(2+) and Zn(2+) onto a carboxyl groups-rich material prepared from lemon was investigated in batch systems. The results revealed that the sorption is highly pH dependent. Sorption kinetic data indicated that the equilibrium was achieved in the range of 30-240 min for different metal ions and sorption kinetics followed the pseudo-second-order model for all metals studied. Relative sorption rate of various metal cations was found to be in the general order of Ni(2+)>Cd(2+)>Cu(2+)>Pb(2+)>Zn(2+)>Cr(3+). The binding characteristics of the sorbent for heavy metal ions were analyzed under various conditions and isotherm data was accurately fitted to the Langmuir equation. The metal binding capacity order calculated from Langmuir isotherm was Pb(2+)>Cu(2+)>Ni(2+)>Cd(2+)>Zn(2+)>Cr(3+). The mean free energy of metal sorption process calculated from Dubinin-Radushkevich parameter and the Polanyi potential was found to be in the range of 8-11 kJ mol(-1) for the metals studied showing that the main mechanism governing the sorption process seems to be ion exchange. The basic thermodynamic parameters of metals ion sorption process were calculated by using the Langmuir constants obtained from equilibration study. The DeltaG degrees and DeltaH degrees values for metals ion sorption on the lemon sorbent showed the process to be spontaneous and exothermic in nature. Relatively low DeltaH degrees values revealed that physical adsorption significantly contributed to the mechanism.  相似文献   

2.
The effect of humic acids (HA) in river water on the sorption properties of metallurgical slag (major component Ca2SiO4) was revealed in batch sorption experiments. Interaction of HA with sorbate cations in solution and with the sorbent surface affects the character of the sorption process found previously for dicalcium silicate. This interaction results in a decrease in the affinity of dicalcium silicate to multiple-charged cations [REE(III), U(VI), Th(IV)] in their sorption from river water by more than an order of magnitude. Possible chemical transformations responsible for a decrease in the sorption affinity of the silicate sorbent are discussed: complexation of HA with metal cations in the aqueous phase and competing reactions of the sorption of HA and calcium humate complexes on the surface of sorbent particles.  相似文献   

3.
Factors influencing the removal of divalent cations by hydroxyapatite   总被引:3,自引:0,他引:3  
The effect of pH, contact time, initial metal concentration and presence of common competing cations, on hydroxyapatite (HAP) sorption properties towards Pb(2+), Cd(2+), Zn(2+), and Sr(2+) ions was studied and compared using a batch technique. The results strongly indicated the difference between the sorption mechanism of Pb(2+) and other investigated cations: the removal of Pb(2+) was pH-independent and almost complete in the entire pH range (3-12), while the sorption of Cd(2+), Zn(2+) and Sr(2+) generally increased with an increase of pH; the contact time required for attaining equilibrium was 30 min for Pb(2+) versus 24h needed for other cations; maximum sorption capacity of HAP sample was found to be an order of magnitude higher for Pb(2+) (3.263 mmol/g), than for Cd(2+) (0.601 mmol/g), Zn(2+) (0.574 mmol/g) and Sr(2+) (0.257 mmol/g); the selectivity of HAP was found to decrease in the order Pb(2+)>Cd(2+)>Zn(2+)>Sr(2+) while a decrease of pH(PZC), in respect to the value obtained in inert electrolyte, followed the order Cd(2+)>Zn(2+)>Pb(2+)>Sr(2+); neither of investigated competing cations (Ca(2+), Mg(2+), Na(+) and K(+)) influenced Pb(2+) immobilization whereas the sorption of other cations was reduced in the presence of Ca(2+), in the order Sr(2+)>Cd(2+)>or=Zn(2+). The pseudo-second order kinetic model and Langmuir isotherm have been proposed for modeling kinetic and equilibrium data, respectively. The sorption of all examined metals was followed by Ca(2+) release from the HAP crystal lattice and pH decrease. The ion exchange and specific cation sorption mechanisms were anticipated for Cd(2+), Zn(2+) and Sr(2+), while dissolution of HAP followed by precipitation of hydroxypyromorphite (Pb(10)(PO(4))(6)(OH)(2)) was found to be the main operating mechanism for Pb(2+) immobilization by HAP, with the contribution of specific cation sorption.  相似文献   

4.
A new and efficient solid phase extraction method is described for the preconcentration of trace heavy metal ions. The method is based on the adsorption of Fe(3+), Cu(2+) and Zn(2+) on 2-phenyl-1H-benzo[d] imidazole (PHBI) loaded on Triton X-100-coated polyvinyl chloride (PVC). The influences of the analytical parameters including pH and sample volume were investigated. Common coexisting ions did not interfere on the separation and determination of analytes under study. The adsorbed analytes were desorbed by using 5 mL of 4 mol L(-1) nitric acid. The preconcentration factor is 90. The detection limits (3 sigma) were in the range of 0.95-1 microg L(-1). The sorbent exhibited excellent stability and its sorption capacity under optimum conditions has been found to be more than 2.7 mg of ions per gram of sorbent. The recoveries of analytes were generally higher than 95%. The relative standard deviations (R.S.D.s) were generally lower than 4%. The method has been successfully applied to some real samples.  相似文献   

5.
Carbon nanotube addition has been shown to improve the mechanical properties of some polymers. Because of their unique adsorptive properties, carbon nanotubes may also improve the barrier performance of polymers used in contaminant containment. This study compares the barrier performance of poly(vinyl alcohol) (PVA) membranes containing single-walled carbon nanotubes (SWCNTs) to that for PVA containing powdered activated carbon (PAC). Raw and surface-functionalized versions of each sorbent were tested for their abilities to adsorb 1,2,4-trichlorobenzene and Cu(2+), representing the important hydrophobic organic and heavy metal contaminant classes, as they diffused across the PVA. In both cases, PAC (for 1,2,4-trichlorobenzene) and functionalized PAC (for Cu(2+)) outperformed SWCNTs on a per mass basis by trapping more of the contaminants within the barrier membrane. Kinetics of sorption are important in evaluating barrier properties, and poor performance of SWCNT-containing membranes as 1,2,4-TCB barriers is attributed to kinetic limitations.  相似文献   

6.
Mango peel waste (MPW) was evaluated as a new sorbent for the removal of Cd(2+) and Pb(2+) from aqueous solution. The maximum sorption capacity of Cd(2+) and Pb(2+) was found to be 68.92 and 99.05mgg(-1), respectively. The kinetics of sorption of both metals was fast, reaching at equilibrium in 60min. Sorption kinetics and equilibria followed pseudo-second order and Langmuir adsorption isotherm models. FTIR analysis revealed that carboxyl and hydroxyl functional groups were mainly responsible for the sorption of Cd(2+) and Pb(2+). Chemical modification of MPW for blocking of carboxyl and hydroxyl groups showed that 72.46% and 76.26% removal of Cd(2+) and Pb(2+), respectively, was due to the involvement of carboxylic group, whereas 26.64% and 23.74% was due to the hydroxyl group. EDX analysis of MPW before and after metal sorption and release of cations (Ca(2+), Mg(2+), Na(+), K(+)) and proton H(+) from MPW with the corresponding uptake of Cd(2+) and Pb(2+) revealed that the main mechanism of sorption was ion exchange. The regeneration experiments showed that the MPW could be reused for five cycles without significant loss in its initial sorption capacity. The study points to the potential of new use of MPW as an effective sorbent for the removal of Cd(2+) and Pb(2+) from aqueous solution.  相似文献   

7.
Immobilization of heavy metals from contaminated environments is an emerging field of interest from both resource conservation and environmental remediation points of view. This study investigated the feasibility of using phosphatic clay, a waste by-product of the phosphate mining industry, as an effective sorbent for Pb from aqueous effluents. The major parameters controlling aqueous Pb removal, viz. initial metal ion concentrations, solution pH, sorbent amounts, ionic strength and presence of both inorganic and organic ligands were evaluated using batch experiments. Results demonstrated that aqueous Pb removal efficiency of phosphatic clay is controlled mainly by dissolution of phosphatic clay associated fluoroapatite [Ca(10)(PO(4))(5)CaCO(3)(F,Cl,OH)(2)], followed by subsequent precipitation of geochemically stable pyromorphite [Pb(10)(PO(4))(6)(F,Cl,OH)(2)], which was confirmed by both X-ray diffraction (XRD) and scanning electron microscopic (SEM) analysis. Lead removal efficiency of phosphatic clay increased with increasing pH, sorbent amount and decreasing ionic strength. It also depends on the nature of complexing ligands. Formation of insoluble calcium oxalate and lead oxalate in the presence of oxalic acid explained high uptake of Pb by phosphatic clay from aqueous solution. However, Pb sorption kinetics onto phosphatic clay were biphasic, with initially fast reactions followed by slow and continuous Pb removal reactions. The slow reactions may include surface sorption, co-precipitation and diffusion. The exceptional capability of phosphatic clay to remove aqueous Pb demonstrated its potential as a cost effective way to remediate Pb-contaminated water, soils and sediments.  相似文献   

8.
The hydration of tricalcium silicate (C(3)S) in the presence of heavy metal is very important to cement-based solidification/stabilisation (s/s) of waste. In this work, tricalcium silicate pastes and aqueous suspensions doped with nitrate salts of Zn(2+), Pb(2+), Cu(2+) and Cr(3+) were examined at different ages by X-ray powder diffraction (XRD), thermal analysis (DTA/TG) and (29)Si solid-state magic angle spinning/nuclear magnetic resonance (MAS/NMR). It was found that heavy metal doping accelerated C(3)S hydration, even though Zn(2+) doping exhibited a severe retardation effect at an early period of time of C(3)S hydration. Heavy metals retarded the precipitation of portlandite due to the reduction of pH resulted from the hydrolysis of heavy metal ions during C(3)S hydration. The contents of portlandite in the control, Cr(3+)-doped, Cu(2+)-doped, Pb(2+)-doped and Zn(2+)-doped C(3)S pastes aged 28 days were 16.7, 5.5, 5.5, 5.5, and <0.7%, respectively. Heavy metals co-precipitated with calcium as double hydroxides such as (Ca(2)Cr(OH)(7).3H(2)O, Ca(2)(OH)(4)4Cu(OH)(2).2H(2)O and CaZn(2)(OH)(6).2H(2)O). These compounds were identified as crystalline phases in heavy metal doping C(3)S suspensions and amorphous phases in heavy metal doping C(3)S pastes. (29)Si NMR data confirmed that heavy metals promoted the polymerisation of C-S-H gel in 1-year-old of C(3)S pastes. The average numbers of Si in C-S-H gel for the Zn(2+)-doped, Cu(2+)-doped, Cr(3+)-doped, control, and Pb(2+)-doped C(3)S pastes were 5.86, 5.11, 3.66, 3.62, and 3.52. And the corresponding Ca/Si ratios were 1.36, 1.41, 1.56, 1.57 and 1.56, respectively. This study also revealed that the presence of heavy metal facilitated the formation of calcium carbonate during C(3)S hydration process in the presence of carbon dioxide.  相似文献   

9.
Four lead(II) coordination polymers were isolated under hydro(solvo)thermal conditions. The applied synthetic methodology takes advantage of the coordination behaviour of a new bifunctional organoarsonate ligand, 4-(1, 2, 4-triazol-4-yl)phenylarsonic acid (H2TPAA) and involves the variation of lead(II) reactants, metal/ligand mole ratios, and solvents. The constitutional composition of the four lead(II) coordination polymers can be formulated as [Pb2(TPAA)(HTPAA)(NO3)]·6H2O (1), [Pb2(TPAA)(HTPAA)2]·DMF·0.5H2O (DMF = N, N-Dimethylformamide) (2), [Pb2Cl2(TPAA)H2O] (3), and [Pb3Cl(TPAA)(HTPAA)2H2O]Cl (4). The compounds were characterized by single-crystal and powder x-ray diffraction techniques, thermogravimetric analyses, infra-red spectroscopy, and elemental analyses. Single-crystal x-ray diffraction reveals that 1 and 2 represent two-dimensional (2D) layered structures whilst 3 and 4 form three-dimensional (3D) frameworks. The structures of 1, 2, and 4 contain one-dimensional (1D) {PbII/AsO3} substructures, while 3 is composed of 2D {PbII/AsO3} arrays. Besides their interesting topologies, 1–4 all exhibit photoluminescence properties in the solid state at room temperature.  相似文献   

10.
A batch method was used to investigate the uptake of heavy metal cations and anions by the compounds in the CaTiO(3)-CaFeO(2.5) system, in which a series of oxygen vacancies was systematically introduced into a perovskite structure as the x-value of Ca(Fe(x)Ti(1-x))O(3-x/2) was increased. Samples of CaTiO(3), CaFe(0.1)Ti(0.9)O(2.95), CaFe(0.5)Ti(0.5)O(2.75), CaFe(0.67)Ti(0.33)O(2.67) and CaFeO(2.5) were prepared by solid mixing (SM), co-precipitation (CP) and gel evaporation (GE) methods. The resulting samples were calcined at temperatures between 400 and 1000 °C. The target crystalline phases differed according to the preparation method, but in most cases were formed at 700-800 °C. The Ni(2+) sorption isotherms of all the samples were fitted better by the Langmuir model than by the Freundlich model, while in the case of H(2)PO(4)(-) sorption isotherms, these were better fitted by the latter model. The uptake ability increased with increasing x value of the samples. The maximum values for the saturated sorption of Ni(2+) (Q(0)(Ni(2+)) = 2.83 mmol/g) and H(2)PO(4)(-) (K(F)(H(2)PO(4)(-)) = 2.95 mmol/g) were achieved for x = 1 (i.e. CaFeO(2.5)) sample.  相似文献   

11.
In the present study, a novel hybrid sorbent ZrP-001 was prepared by loading zirconium phosphate (ZrP) onto a strongly acidic cation exchanger D-001. Sorption behavior of Pb(2+), Zn(2+), and Cd(2+) onto ZrP-001 was experimentally examined by comparing with the host exchanger D-001. ZrP-001 was characterized by scanning electron micrograph (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), pH-titration and pore size distribution analysis. Sorption of the heavy metals onto ZrP-001 was found to be pH-dependent due to the ion exchange mechanism. Compared to D-001, a smaller pore size of ZrP-001 due to the ZrP dispersion consequently resulted in a lower sorption rate. Competitive effect of Ca(2+) on sorption of heavy metals onto ZrP-001 and D-001 was compared to elucidate sorption preference of the hybrid sorbent towards heavy metals. More favorable sorption of ZrP-001 than D-001 was observed for all the three metals and their sorption preference onto ZrP-001 followed the order Pb(2+)>Zn(2+) approximately Cd(2+). Fixed-bed sorption results and its efficient regeneration property further demonstrated that ZrP-001 is a potential candidate for removing heavy metals from contaminated water.  相似文献   

12.
Recently, Smiciklas et al. [I. Smiciklas, A. Onjia, S. Raicevi?, Dj. Jana?kovi?, M. Mitri?, J. Hazard. Mater. 152 (2008) 876-884)] have reported on the effect of pH, contact time, initial metal concentration and presence of common competing cations on hydroxyapatite sorption properties towards Pb(2+), Cd(2+), Zn(2+) and Sr(2+) ions. However, application of some experimental procedures and methods, as well as the presentation and interpretation of some data is problematic or erroneous.  相似文献   

13.
Heavy metal removal from aqueous solutions by activated phosphate rock   总被引:2,自引:1,他引:1  
The use of natural adsorbent such as phosphate rock to replace expensive imported synthetic adsorbent is particularly appropriate for developing countries such as Tunisia. In this study, the removal characteristics of lead, cadmium, copper and zinc ions from aqueous solution by activated phosphate rock were investigated under various operating variables like contact time, solution pH, initial metal concentration and temperature. The kinetic and the sorption process of these metal ions were compared for phosphate rock (PR) and activated phosphate rock (APR). To accomplish this objective we have: (a) characterized both (PR) and (APR) using different techniques (XRD, IR) and analyses (EDAX, BET-N(2)); and, (b) qualified and quantified the interaction of Pb(2+), Cd(2+), Cu(2+) and Zn(2+) with these sorbents through batch experiments. Initial uptake of these metal ions increases with time up to 1h for (PR) and 2h for (APR), after then, it reaches equilibrium. The maximum sorption obtained for (PR) and (APR) is between pH 2 and 3 for Pb(2+) and 4 and 6 for Cd(2+), Cu(2+) and Zn(2+). The effect of temperature has been carried out at 10, 20 and 40 degrees C. The data obtained from sorption isotherms of metal ions at different temperatures fit to linear form of Langmuir sorption equation. The heat of sorption (DeltaH degrees), free energy (DeltaG degrees) and change in entropy (DeltaS degrees) were calculated. They show that sorption of Pb(2+), Cd(2+), Cu(2+) and Zn(2+) on (PR) and (APR) an endothermic process. These findings are significant for future using of (APR) for the removal of heavy metal ions from wastewater under realistic competitive conditions in terms of initial heavy metals, concentrations and pH.  相似文献   

14.
In this study the Pb(2+), Cd(2+) and Zn(2+) adsorption capacity of a natural zeolite was evaluated in batch tests at a constant pH of 5.5 by polluting this mineral with solutions containing increasing concentrations of the three cations to obtain adsorption isotherms. In addition X-ray powder diffraction (XRD) was used to investigate the changes of zeolite structure caused by the exchange with cations of different ionic radius. The zeolite adsorption capacity for the three cations was Zn>Pb>Cd. Moreover a sequential extraction procedure [H(2)O, 0.05 M Ca(NO(3))(2) and 0.02 M EDTA] was applied to zeolite samples used in the adsorption experiments to determine the chemical form of the cations bound to the sorbent. Using this approach it was shown that low concentrations of Pb(2+), Cd(2+) and Zn(2+) were present as water-soluble and exchangeable fractions (<25% of the Me adsorbed), while EDTA extracted most of the adsorbed cations from the zeolite (>27% of the Me adsorbed). The XRD pattern of zeolite, analysed according to the Rietveld method, showed that the main mineralogical phase involved in the adsorption process was clinoptilolite. Besides structure information showed that the incorporation of Pb(2+), Cd(2+) and Zn(2+), into the zeolite frameworks changed slightly but appreciably the lattice parameters. XRD analysis also showed the occurrence of some isomorphic substitution phenomena where the Al(3+) ions of the clinoptilolite framework were replaced by exchanged Pb(2+) cations in the course of the ion exchange reaction. This mechanism was instead less evident in the patterns of the samples doped with Cd(2+) and Zn(2+) cations.  相似文献   

15.
The ionophore solvent extraction of various alkali metal and transition metal cations from the aqueous phase to the organic phase was carried out by using diazo-coupling calix[n]arenes [p-(4-phenylazophenylazo)calix[4]arene (L1) and p-phenylazocalix[6]arene (L2)], phenol derivatives [2,6-dimethyl-3-phenylazophenol (L3), 2-(5-bromo-2-pyridylazo)-5-diethylamino phenol (L4), 2-chloro-4-nitro(phenylazo)-5-sec-butyl-2-phenol (L5) and 2-chloro-4-nitro(phenylazo)-5-tert-butyl-2-phenol (L6)], and ester derivatives [quinoline-8-benzoate (L7), phenyl-1,4-dibenzoate (L8), p-tolyltiobenzoate (L9)]. It was found that, all the compounds (L1-L9) examined showed selectivity for transition metal cations such as Ag+, Hg+ Hg2+, and poor efficiency for alkali metal cations (Na+ and K+). The best extraction efficiency was obtained with L1 and L4.  相似文献   

16.
The present study describes a novel synthetic method for the immobilization of calix[4]arene (II) onto the surface of modified Amberlite XAD-4 resin (4), which does not require the derivatization of calixarene moiety. The novel calix[4]arene based resin (C4 resin) 5 was used as sorbent for the removal of azo dyes. Batch-wise sorption study was carried out and observed that the C4 resin (5) is more effective as compared to compound II as well as pure Amberlite XAD-4 resin (1) to remove the selected dyes [i.e. Reactive Black-5 (RB-5), Reactive Red-45 (RR-45) and Congo Red (CR)]. The effect of sorbent dosage and pH on % sorption was studied. During the extraction process, various kinds of interactions such as electrostatic repulsion, deprotonation of the hydroxyl groups of C4 resin, dissociation of reactive dyes into anions/cations and structural variations were monitored and found that they are highly pH dependent.  相似文献   

17.
Lokshin  E. P.  Ivanenko  V. I.  Udalova  I. A.  Kalinnikov  V. T. 《Radiochemistry》2003,45(4):394-398
Heterogeneous exchange of the proton of hydrated titanyl hydrogen phosphate with Li, Na, K, Rb, and Cs cations in aqueous solutions was studied potentiometrically. The sorption equations were proposed. The concentration and thermodynamic equilibrium constants were calculated. The optimal pH range of the solution providing effective sorption of radioactive cesium on hydrated titanyl hydrogen phosphate was determined. The decrease in the efficiency of radiocesium sorption from liquid waste with a high content of competing nonradioactive alkali metal cations is due to a decrease in the pH of this solution in the course of the sorption. To provide efficient sorption removal of radiocesium, the pH should be maintained in the range 4-7, or the sodium form of the sorbent should be used. The selectivity of radiocesium sorption on TiOHPO4 in the presence of excess sodium cation was estimated.  相似文献   

18.
Equilibrium study of ion-pair extraction of a cationic water-soluble porphyrin [5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin, H(2)tmpyp(4+)] and its metalloporphyrins (MP) into the acetonitrile layer, separated by addition of sodium chloride (4.00 mol dm(-)(3)) to a 1:1 (v/v) acetonitrile-water mixed solvent, was carried out to develop a new and useful method for the determination of a subnanogram amount of copper(II). M denotes Zn(2+), Cu(2+), Co(3+), Fe(3+), and Mn(3+), and P(2)(-) is porphyrinate ion. The extraction and dissociation constants of the ion-pair complexes, defined by K(ex) = [MP(ClO(4))(4)](org)[MP(4+)](aq)(-)(1)[ClO(4)(-)](aq)(-)(4), K(dis,1) = [MP(ClO(4))(3)(+)](org)[ClO(4)(-)](org)[MP(ClO(4))(4)](org)(-)(1), and K(dis,2) = [MP(ClO(4))(2)(2+)](org)[ClO(4)(-)](org)[MP(ClO(4))(3)(+)](org)(-)(1), were determined by taking into account the partition constant of sodium perchlorate (K(D) = 1.82 ± 0.01). The equilibrium constants were found to be K(ex)K(dis,1) = (7.2 ± 1.3) × 10(4), (6.4 ± 0.9) × 10(4), (1.35 ± 0.13) × 10(5), (4.8 ± 0.6) × 10(3), (1.23 ± 0.05) × 10(4), and (1.42 ± 0.07) × 10(3) at 25 °C for the free base porphyrin (H(2)tmpyp(4+)) and the metalloporphyrins of zinc(II), copper(II), cobalt(III), iron(III), and manganese(III), respectively. The K(dis,2) values were (2.9 ± 1.4) × 10(-)(2), (3.1 ± 1.1) × 10(-)(2), (8.0 ± 4.9) × 10(-)(3), and (5.1 ± 2.2) × 10(-)(2) for the free base porphyrins and the metalloporphyrins of zinc(II), copper(II), and cobalt(III), respectively. The results were developed for determination of a trace amount of copper(II) (3 × 10(-)(8)-4 × 10(-)(6) mol dm(-)(3)) in natural water samples using H(2)tmpyp(4+) with a molar absorptivity of 3.1 × 10(5) mol(-)(1) dm(3) cm(-)(1) at a precision of 1.3% (RSD). The determination of copper(II) was not interfered by the presence of 10(-)(4) mol dm(-)(3) of Mn(2+), Co(2+), Ni(2+), Hg(2+), Cd(2+), Ag(+), Cr(3+), V(5+), Al(3+), Mg(2+), Ca(2+), Br(-), I(-), SCN(-), and S(2)O(3)(2)(-) and 10(-)(5) mol dm(-)(3) of Fe(3+), Zn(2+), and Pd(2+).  相似文献   

19.
The present work explores sorption behavior of calix[4]arene based silica resin to remove α and β endosulfan isomers from aqueous solution. The efficiency of resin was checked through both batch and column sorption methods. In both methods, the sorption parameters, i.e. pH, equilibrium time, shaking speed and sorbent dosage were optimized as 2, 60 min, 125 rpm and 50 mg, respectively. Freundlich and Langmuir sorption isotherm models were applied to validate the sorption process. The data obtained in both models reveal that the sorption is favorable. Column sorption data were analyzed through Thomas model to calculate kinetic coefficient k(TH) and maximum sorption capacity q(o) of the resin, which were found to be 6.18 and 5.83 cm(3) mg(-1) min(-1) as well as 1.11 and 1.08 mg g(-1) for α and β endosulfan, respectively. Kinetics of sorption shows that it follows pseudo second order rate equation. The optimized method has also been applied to real water samples and the results show that calix[4]arene based silica resin is an effective sorbent to remove endosulfan from waste waters.  相似文献   

20.
To improve the performance of chitin-containing Mikoton-Ch sorbent, it was modified with K2Cu[Fe(CN)6] or Fe2O3. The sorbents modified with a mixture of these agents were also prepared. The modifying agents are strongly fixed on the Mikoton surface. The techniques for preparing the modified Mikoton are described. The sorption of Cs, Sr, Pu, and Am on modified Mikoton sorbents was studied in relation to the modifier content. Mikoton modified with K2Cu[Fe(CN)6] efficiently sorbs 137Cs with the distribution factor K d of up to 104 ml/g but exhibits low sorption power for Sr, Pu, and Am. Mikoton modified with Fe3O4 is a ferromagnetic material. This sorbent exhibits increased sorption power for Pu and Am (K d = 104-105 ml/g) but poorly sorbs 137Cs. The feasibility of practical application of different kinds of modified Mikoton sorbents is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号