共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The analysis of amikacin by liquid chromatography using a column packed with poly(styrene-divinylbenzene) and pulsed electrochemical detection on a gold electrode is described. A two-step gradient was necessary to obtain a good separation together with a reasonable analysis time of 60 min. The mobile phases consisted of an aqueous solution of 1 g/l or 60 g/l sodium sulfate, 1.8 g/l sodium octanesulfonate and 50 ml/l 0.2 M phosphate buffer, pH 3.0. Sodium hydroxide was added postcolumn. The influence of the different chromatographic parameters on the separation was investigated. When a number of commercial samples of amikacin was analyzed using this method, ten different components were separated. 相似文献
3.
Mutants of ECF1-ATPase were generated, containing cysteine residues in one or more of the following positions: alphaSer-411, betaGlu-381, and epsilonSer-108, after which disulfide bridges could be created by CuCl2 induced oxidation in high yield between alpha and epsilon, beta and epsilon, alpha and gamma, beta and gamma (endogenous Cys-87), and alpha and beta. All of these cross-links lead to inhibition of ATP hydrolysis activity. In the two double mutants, containing a cysteine in epsilonSer-108 along with either the DELSEED region of beta (Glu-381) or the homologous region in alpha (Ser-411), there was a clear nucleotide dependence of the cross-link formation with the epsilon subunit. In betaE381C/epsilonS108C the beta-epsilon cross-link was obtained preferentially when Mg2+ and ADP + Pi (addition of MgCl2 + ATP) was present, while the alpha-epsilon cross-link product was strongly favored in the alphaS411C/epsilonS108C mutant in the Mg2+ ATP state (addition of MgCl2 + 5'-adenylyl-beta,gamma-imidodiphosphate). In the triple mutant alphaS411C/betaE381C/epsilonS108C, the epsilon subunit bound to the beta subunit in Mg2+-ADP and to the alpha subunit in Mg2+-ATP, indicating a significant movement of this subunit. The gamma subunit cross-linked to the beta subunit in higher yield in Mg2+-ATP than in Mg2+-ADP, and when possible, i.e. in the triple mutant, always preferred the interaction with the beta over the alpha subunit. 相似文献
4.
The rate of ATP synthesized by the ATP synthase (F0F1-ATPase) is limited by the rate of energy production via the respiratory chain, when measured in everted membrane vesicles of an Escherichia coli atp wild-type strain. After energization of the membranes with NADH, fractional inactivation of F0F1 by the covalent inhibitor N,N'-dicyclohexylcarbodiimide allowed the rate of ATP synthesis/mol remaining active ATP synthase complexes to increase; the active ATP synthase complexes were calculated using ATP hydrolysis rates as the defining parameter. In addition, variation of the assay temperature revealed an increase of the ATP synthesis rate up to a temperature of 37 degrees C, the optimal growth temperature of E. coli. In parallel, the amount of F0F1 complexes present in membrane vesicles was determined by immunoquantitation to be 3.3 +/- 0.3% of the membrane protein for cells grown in rich medium and 6.6 +/- 0.3% for cells grown in minimal medium with glycerol as sole carbon and energy source. Based on these data, a turnover number for ATP synthesis of 270 +/- 40 s(-1) could be determined in the presence of 5% active F0F1 complexes. Therefore, these studies demonstrate that the ATP synthase complex of E. coli has, with respect to maximum rates, the same capacity as the corresponding enzymes of eukaryotic organells. 相似文献
5.
K Sawada N Kuroda H Watanabe C Moritani-Otsuka H Kanazawa 《Canadian Metallurgical Quarterly》1997,272(48):30047-30053
Interactions of the F1F0-ATPase subunits between the cytoplasmic domain of the b subunit (residues 26-156, bcyt) and other membrane peripheral subunits including alpha, beta, gamma, delta, epsilon, and putative cytoplasmic domains of the a subunit were analyzed with the yeast two-hybrid system and in vitro reconstitution of ATPase from the purified subunits as well. Only the combination of bcyt fused to the activation domain of the yeast GAL-4, and delta subunit fused to the DNA binding domain resulted in the strong expression of the beta-galactosidase reporter gene, suggesting a specific interaction of these subunits. Expression of bcyt fused to glutathione S-transferase (GST) together with the delta subunit in Escherichia coli resulted in the overproduction of these subunits in soluble form, whereas expression of the GST-bcyt fusion alone had no such effect, indicating that GST-bcyt was protected by the co-expressed delta subunit from proteolytic attack in the cell. These results indicated that the membrane peripheral domain of b subunit stably interacted with the delta subunit in the cell. The affinity purified GST-bcyt did not contain significant amounts of delta, suggesting that the interaction of these subunits was relatively weak. Binding of these subunits observed in a direct binding assay significantly supported the capability of binding of the subunits. The ATPase activity was reconstituted from the purified bcyt together with alpha, beta, gamma, delta, and epsilon, or with the same combination except epsilon. Specific elution of the ATPase activity from glutathione affinity column with the addition of glutathione after reconstitution demonstrated that the reconstituted ATPase formed a complex. The result indicated that interaction of b and delta was stabilized by F1 subunits other than epsilon and also suggested that b-delta interaction was important for F1-F0 interaction. 相似文献
6.
AJ Rodgers S Wilkens R Aggeler MB Morris SM Howitt RA Capaldi 《Canadian Metallurgical Quarterly》1997,272(49):31058-31064
The delta and b subunits are both involved in binding the F1 to the F0 part in the Escherichia coli ATP synthase (ECF1F0). The interaction of the purified delta subunit and the isolated hydrophilic domain of the b subunit (bsol) has been studied here. Purified delta binds to bsol weakly in solution, as indicated by NMR studies and protease protection experiments. On F1, i.e. in the presence of ECF1-delta, delta, and bsol interact strongly, and a complex of ECF1.bsol can be isolated by native gel electrophoresis. Both delta subunit and bsol are protected from trypsin cleavage in this complex. In contrast, the delta subunit is rapidly degraded by the protease when bound to ECF1 when bsol is absent. The interaction of bsol with ECF1 involves the C-terminal domain of delta as delta(1-134) cannot replace intact delta in the binding experiments. As purified, bsol is a stable dimer with 80% alpha helix. A monomeric form of bsol can be obtained by introducing the mutation A128D (Howitt, S. M., Rodgers, A. J.,W., Jeffrey, P. D., and Cox, G. B. (1996) J. Biol. Chem. 271, 7038-7042). Monomeric bsol has less alpha helix, i.e. only 58%, is much more sensitive to trypsin cleavage than dimer, and unfolds at much lower temperatures than the dimer in circular dichroism melting studies, indicating a less stable structure. The bsol dimer, but not monomer, binds to delta in ECF1. To examine whether subunit b is a monomor or dimer in intact ECF1F0, CuCl2 was used to induce cross-link formation in the mutants bS60C, bQ104C, bA128C, bG131C, and bS146C. With the exception of bS60C, CuCl2 treatment resulted in formation of b subunit dimers in all mutants. Cross-linking yield was independent of nucleotide conditions and did not affect ATPase activity. These results show the b subunit to be dimeric for a large portion of the C terminus, with residues 124-131 likely forming a pair of parallel alpha helices. 相似文献
7.
This case describes a new feature of fetal brain death syndrome, abnormal movements mimicking fetal convulsions being subsequently found to be decerebrate hypertonicity in a brain-dead fetus. It also confirms the diagnostic criteria of fetal brain death, both clinical and ultrasonic. The development of polyhydramnios both prior to and after the presumed neurological event is suggested as an association with the diagnosis of fetal brain death. Increased awareness of this event and the heterogeneity of the presentation may prevent further unnecessary Caesarean sections, as to date only 4 of the 10 cases in the literature were diagnosed prenatally. Utilization of techniques such as fetal blood sampling should be considered to further delineate the diagnosis. 相似文献
8.
An affinity resin for the F1 sector of the Escherichia coli ATP synthase was prepared by coupling the b subunit to a solid support through a unique cysteine residue in the N-terminal leader. b24-156, a form of b lacking the N-terminal transmembrane domain, was able to compete with the affinity resin for binding of F1. Truncated forms of b24-156, in which one or four residues from the C terminus were removed, competed poorly for F1 binding, suggesting that these residues play an important role in b-F1 interactions. Sedimentation velocity analytical ultracentrifugation revealed that removal of these C-terminal residues from b24-156 resulted in a disruption of its association with the purified delta subunit of the enzyme. To determine whether these residues interact directly with delta, cysteine residues were introduced at various C-terminal positions of b and modified with the heterobifunctional cross-linker benzophenone-4-maleimide. Cross-links between b and delta were obtained when the reagent was incorporated at positions 155 and 158 (two residues beyond the normal C terminus) in both the reconstituted b24-156-F1 complex and the membrane-bound F1F0 complex. CNBr digestion followed by peptide sequencing showed the site of cross-linking within the 177-residue delta subunit to be C-terminal to residue 148, possibly at Met-158. These results indicate that the b and delta subunits interact via their C-terminal regions and that this interaction is instrumental in the binding of the F1 sector to the b subunit of F0. 相似文献
9.
F1-stripped membrane vesicles from Clostridium thermoautotrophicum and Escherichia coli were reconstituted with F1-ATPases from both bacteria. Reconstituted F1F0-ATPase complexes were catalytically active, i.e. capable of hydrolyzing ATP. Homologous-type ATPase complexes having F0 and F1 parts of ATP synthases from the same origin were DCCD sensitive and supported ATP-driven enhancement of anilinonaphthalene sulfonate (ANS) fluorescence. Hybrid-type ATPase complexes having F0 and F1 parts of ATP synthases from different origins were neither DCCD sensitive nor did they support ATP-driven enhancement of ANS fluorescence. Analyzing these results it has been demonstrated that the F0 and F1 parts of ATP synthases of these two bacteria are not functionally compatible. 相似文献
10.
The soluble portion of the Escherichia coli F1F0 ATP synthase (ECF1) and E. coli F1F0 ATP synthase (ECF1F0) have been isolated from a novel mutant gammaY205C. ECF1 isolated from this mutant had an ATPase activity 3.5-fold higher than that of wild-type enzyme and could be activated further by maleimide modification of the introduced cysteine. This effect was not seen in ECF1F0. The mutation partly disrupts the F1 to F0 interaction, as indicated by a reduced efficiency of proton pumping. ECF1 containing the mutation gammaY205C was bound to the membrane-bound portion of the E. coli F1F0 ATP synthase (ECF0) isolated from mutants cA39C, cQ42C, cP43C, and cD44C to reconstitute hybrid enzymes. Cu2+ treatment or reaction with 5,5'-dithio-bis(2-nitro-benzoic acid) induced disulfide bond formation between the Cys at gamma position 205 and a Cys residue at positions 42, 43, or 44 in the c subunit but not at position 39. Using Cu2+ treatment, this covalent cross-linking was obtained in yields as high as 95% in the hybrid ECF1 gammaY205C/cQ42C and in ECF1F0 isolated from the double mutant of the same composition. The covalent linkage of the gamma to a c subunit had little effect on ATPase activity. However, ATP hydrolysis-linked proton translocation was lost, by modification of both gamma Cys-205 and c Cys-42 by bulky reagents such as 5,5'-dithio-bis (2-nitro-benzoic acid) or benzophenone-4-maleimide. In both ECF1 and ECF1F0 containing a Cys at gamma 205 and a Cys in the epsilon subunit (at position 38 or 43), cross-linking of the gamma to the epsilon subunit was induced in high yield by Cu2+. No cross-linking was observed in hybrid enzymes in which the Cys was at position 10, 65, or 108 of the epsilon subunit. Cross-linking of gamma to epsilon had only a minimal effect on ATP hydrolysis. The reactivity of the Cys at gamma 205 showed a nucleotide dependence of reactivity to maleimides in both ECF1 and ECF1F0, which was lost in ECF1 when the epsilon subunit was removed. Our results show that there is close interaction of the gamma and epsilon subunits for the full-length of the stalk region in ECF1F0. We argue that this interaction controls the coupling between nucleotide binding sites and the proton channel in ECF1F0. 相似文献
11.
In Escherichia coli F1F0-ATP synthase, the two b subunits form the second stalk spanning the distance between the membrane F0 sector and the bulk of F1. Current models predict that the stator should be relatively rigid and engaged in contact with F1 at fixed points. To test this hypothesis, we constructed a series of deletion mutations in the uncF(b) gene to remove segments from the middle of the second stalk of the subunit. Mutants with deletions of 7 amino acids were essentially normal, and those with deletions of up to 11 amino acids retained considerable activity. Membranes prepared from these strains had readily detectable levels of F1-ATPase activity and proton pumping activity. Removal of 12 or more amino acids resulted in loss of oxidative phosphorylation. Levels of membrane-associated F1-ATPase dropped precipitously for the longer deletions, and immunoblot analysis indicated that reductions in activity correlated with reduced levels of b subunit in the membranes. Assuming the likely alpha-helical conformation for this area of the b subunit, the 11-amino acid deletion would result in shortening the subunit by approximately 16 A. Since these deletions did not prevent the b subunit from participating in productive interactions with F1, we suggest that the b subunit is not a rigid rodlike structure, but has an inherent flexibility compatible with a dynamic role in coupling. 相似文献
12.
Subunits a and c of Fo are thought to cooperatively catalyze proton translocation during ATP synthesis by the Escherichia coli F1Fo ATP synthase. Optimizing mutations in subunit a at residues A217, I221, and L224 improves the partial function of the cA24D/cD61G double mutant and, on this basis, these three residues were proposed to lie on one face of a transmembrane helix of subunit a, which then interacted with the transmembrane helix of subunit c anchoring the essential aspartyl group. To test this model, in the present work Cys residues were introduced into the second transmembrane helix of subunit c and the predicted fourth transmembrane helix of subunit a. After treating the membrane vesicles of these mutants with Cu(1, 10-phenanthroline)2SO4 at 0 degrees, 10 degrees, or 20 degreesC, strong a-c dimer formation was observed at all three temperatures in membranes of 7 of the 65 double mutants constructed, i.e., in the aS207C/cI55C, aN214C/cA62C, aN214C/cM65C, aI221C/cG69C, aI223C/cL72C, aL224C/cY73C, and aI225C/cY73C double mutant proteins. The pattern of cross-linking aligns the helices in a parallel fashion over a span of 19 residues with the aN214C residue lying close to the cA62C and cM65C residues in the middle of the membrane. Lesser a-c dimer formation was observed in nine other double mutants after treatment at 20 degreesC in a pattern generally supporting that indicated by the seven landmark residues cited above. Cross-link formation was not observed between helix-1 of subunit c and helix-4 of subunit a in 19 additional combinations of doubly Cys-substituted proteins. These results provide direct chemical evidence that helix-2 of subunit c and helix-4 of subunit a pack close enough to each other in the membrane to interact during function. The proximity of helices supports the possibility of an interaction between Arg210 in helix-4 of subunit a and Asp61 in helix-2 of subunit c during proton translocation, as has been suggested previously. 相似文献
13.
The b- and delta-subunits of the Escherichia coli ATP synthase are critical for binding ECF1 to the F0 part, and appear to constitute the stator necessary for holding the alpha3beta3 hexamer as the c-epsilon-gamma domain rotates during catalysis. Previous studies have determined that the b-subunits are dimeric for a large part of their length, and interact with the F1 part through the delta-subunit (Rodgers, A. J. W., Wilkens, S., Aggeler, R., Morris, M. B., Howitt, S. M., and Capaldi, R. A. (1997) J. Biol. Chem. 272, 31058-31064). To further study b-subunit interactions, three mutants were constructed in which Ser-84, Ala-144, and Leu-156, respectively, were replaced by Cys. Treatment of purified ECF1F0 from all three mutants with CuCl2 induced disulfide formation resulting in b-subunit dimer cross-link products. In addition, the mutant bL156C formed a cross-link from a b-subunit to an alpha-subunit via alphaCys90. Neither b-b nor b-alpha cross-linking had significant effect on ATPase activities in any of the mutants. Proton pumping activities were measured in inner membranes from the three mutants. Dimerization of the b-subunit did not effect proton pumping in mutants bS84C or bA144C. In the mutant bL156C, CuCl2 treatment reduced proton pumping markedly, probably because of uncoupling caused by the b-alpha cross-link formation. The results show that the alpha-subunit forms part of the binding site on ECF1 for the b2delta domain and that the b-subunit extends all the way from the membrane to the top of the F1 structure. Some conformational flexibility in the connection between the second stalk and F1 appears to be required for coupled catalysis. 相似文献
14.
Morgagni-Larrey's hernias, which are both infrequent and generally asymptomatic, are often diagnosed by chance during routine diagnostic tests performed for other pathologies. Usually congenital in adults, they are often small or only take the form of a pre-hernia lipoma. Intestinal occlusion is rarely described and frequently entails diagnostic difficulties before hydroaerial levels are demonstrated in the thoracic region. In these cases, surgery using an abdominal approach should be preferred in order to treat compressed abdominal viscera at the same time and to exclude the bilateral nature of the lesion. The authors present two cases of an adult man and woman who were referred to their attention for occlusive pathologies. Both were operated using a laparotomy approach. The reduction of abdominal viscera did not present any difficulties. The hernial sac was only removed in the first patient. Plastic surgery was completed by attaching the diaphragmatic flap to the costal and sternal wall using separate non-reabsorbing suture stitches. No complications were reported. 相似文献
15.
On the role of Arg-210 and Glu-219 of subunit a in proton translocation by the Escherichia coli F0F1-ATP synthase 总被引:1,自引:0,他引:1
A strain of Escherichia coli was constructed which had a complete deletion of the chromosomal uncB gene encoding subunit a of the F0F1-ATP synthase. Gene replacement was facilitated by a selection protocol that utilized the sacB gene of Bacillus subtilis cloned in a kanamycin resistance cartridge (Ried, J. L., and Collmer, A. (1987) Gene (Amst.) 57, 239-246). F0 subunits b and c inserted normally into the membrane in the DeltauncB strain. This observation confirms a previous report (Hermolin, J., and Fillingame, R. H. (1995) J. Biol. Chem. 270, 2815-2817) that subunit a is not required for the insertion of subunits b and c. The DeltauncB strain has been used to characterize mutations in Arg-210 and Glu-219 of subunit a, residues previously postulated to be essential in proton translocation. The aE219G and aE219K mutants grew on a succinate carbon source via oxidative phosphorylation and membranes from these mutants exhibited ATPase-coupled proton translocation (i.e. ATP driven 9-amino-6-chloromethoxyacridine quenching responses that were 60-80% of wild type membranes). We conclude that the aGlu-219 residue cannot play a critical role in proton translocation. The aR210A mutant did not grow on succinate and membranes exhibited no ATPase-coupled proton translocation. However, on removal of F1 from membrane, the aR210A mutant F0 was active in passive proton translocation, i.e. in dissipating the DeltapH normally established by NADH oxidation with these membrane vesicles. aR210A membranes with F1 bound were also proton permeable. Arg-210 of subunit a may play a critical role in active H+ transport that is coupled to ATP synthesis or hydrolysis, but is not essential for the translocation of protons across the membranes. 相似文献
16.
Membrane topology of subunit a of the F1F0 ATP synthase as determined by labeling of unique cysteine residues 总被引:2,自引:0,他引:2
The membrane topology of the a subunit of the F1F0 ATP synthase from Escherichia coli has been probed by surface labeling using 3-(N-maleimidylpropionyl) biocytin. Subunit a has no naturally occurring cysteine residues, allowing unique cysteines to be introduced at the following positions: 8, 24, 27, 69, 89, 128, 131, 172, 176, 196, 238, 241, and 277 (following the COOH-terminal 271 and a hexahistidine tag). None of the single mutations affected the function of the enzyme, as judged by growth on succinate minimal medium. Membrane vesicles with an exposed cytoplasmic surface were prepared using a French pressure cell. Before labeling, the membranes were incubated with or without a highly charged sulfhydryl reagent, 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid. After labeling with the less polar biotin maleimide, the samples were solubilized with octyl glucoside/cholate and the subunit a was purified via the oligohistidine at its COOH terminus using immobilized nickel chromatography. The purified samples were electrophoresed and transferred to nitrocellulose for detection by avidin conjugated to alkaline phosphatase. Results indicated cytoplasmic accessibility for residues 69, 172, 176, and 277 and periplasmic accessibility for residues 8, 24, 27, and 131. On the basis of these and earlier results, a transmembrane topology for the subunit a is proposed. 相似文献
17.
A Ekuni H Watanabe N Kuroda K Sawada H Murakami H Kanazawa 《Canadian Metallurgical Quarterly》1998,427(1):64-68
OBJECTIVE: To determine the effect of a specific galloping exercise regimen on collagen fibril mass-average diameters (MAD) in the deep digital flexor tendon (DDFT) and suspensory ligament (SL) of young Thoroughbreds. ANIMALS: 12 Thoroughbred fillies, 21 +/- 1 (mean +/- SD) months old. PROCEDURE: 6 horses underwent a specific 18-month treadmill training program involving galloping exercise. The remaining 6 horses served as controls, undertaking low-volume walking exercise over the same period. Sections were excised from the midpoint of the DDFT and SL, and small strips were dissected from central and peripheral locations for each structure. Fibril diameters were measured from micrographs of transverse ultrathin sections, using a computerized image analysis program. An MAD value was calculated for the central and peripheral regions of the DDFT and SL for each horse. Values for both regions were compared between exercised and control horses. RESULTS: The MAD did not change significantly with exercise for either the DDFT or the SL. CONCLUSION: Loading of the DDFT as a result of this exercise regimen was not sufficient to stimulate collagen fibril hypertrophy, in keeping with current data that indicate this tendon, compared with the SL and superficial digital flexor tendon (SDFT), is subjected to low loads. Microtrauma, in terms of reduction in fibril MAD, may have occurred in the SL at a site different from that sampled. Another possibility is that, between the trot and the gallop, loading of the SL does not increase to the same extent as that of the SDFT. 相似文献
18.
19.
DI Svergun I Aldag T Sieck K Altendorf MH Koch DJ Kane MB Kozin G Grüber 《Canadian Metallurgical Quarterly》1998,75(5):2212-2219
The shape and subunit arrangement of the Escherichia coli F1 ATPase (ECF1 ATPase) was investigated by synchrotron radiation x-ray solution scattering. The radius of gyration and the maximum dimension of the enzyme complex are 4.61 +/- 0.03 nm and 15.5 +/- 0.05 nm, respectively. The shape of the complex was determined ab initio from the scattering data at a resolution of 3 nm, which allowed unequivocal identification of the volume occupied by the alpha3beta3 subassembly and further positioning of the atomic models of the smaller subunits. The delta subunit was positioned near the bottom of the alpha3beta3 hexamer in a location consistent with a beta-delta disulfide formation in the mutant ECF1 ATPase, betaY331W:betaY381C:epsilonS108C, when MgADP is bound to the enzyme. The position and orientation of the epsilon subunit were found by interactively fitting the solution scattering data to maintain connection of the two-helix hairpin with the alpha3beta3 complex and binding of the beta-sandwich domain to the gamma subunit. Nucleotide-dependent changes of the delta subunit were investigated by stopped-flow fluorescence technique at 12 degrees C using N-[4-[7-(dimethylamino)-4-methyl]coumarin-3-yl]maleimide (CM) as a label. Fluorescence quenching monitored after addition of MgATP was rapid [k = 6.6 s-1] and then remained constant. Binding of MgADP and the noncleavable nucleotide analog AMP . PNP caused an initial fluorescent quenching followed by a slower decay back to the original level. This suggests that the delta subunit undergoes conformational changes and/or rearrangements in the ECF1 ATPase during ATP hydrolysis. 相似文献
20.
Subunit a of the E. coli F1F0 ATP synthase was probed by insertion scanning mutagenesis in a region between residues Glu219 and His245. A series of single amino acid insertions, of both alanine and aspartic acid, were constructed after the following residues: 225, 229, 233, 238, 243, and 245. The mutants were tested for growth yield, binding of F1 to membranes, dicyclohexylcarbodiimide sensitivity of ATPase activity, ATP-driven proton translocation, and passive proton permeability of membranes stripped of F1. Significant loss of function was seen only with insertions after positions 238 and 243. In contrast, both insertions after residue 225 and the alanine insertion after residue 245 were nearly identical in function to the wild type. The other insertions showed an intermediate loss of function. Missense mutations of His245 to serine and cysteine were nonfunctional, while the W241C mutant showed nearly normal ATPase function. Replacement of Leu162 by histidine failed to suppress the 245 mutants, but chemical rescue of H245S was partially successful using acetate. An interaction between Trp241 and His245 may be involved in gating a "half-channel" from the periplasmic surface of F0 to Asp61 of subunit a. 相似文献