首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe here the rapid selection of specific MAP-kinase binders from a combinatorial library of designed ankyrin repeat proteins (DARPins). A combined in vitro/in vivo selection approach, based on ribosome display and the protein fragment complementation assay (PCA), yielded a large number of different binders that are fully functional in the cellular cytoplasm. Ribosome-display selection pools of four successive selection rounds were examined to monitor the enrichment of JNK2-specific DARPins. Surprisingly, only one round of ribosome display with subsequent PCA selection of this pool was necessary to isolate a first specific binder with micromolar affinity. After only two rounds of ribosome-display selection followed by PCA, virtually all DARPins showed JNK2-specific binding, with affinities in the low nanomolar range. The enrichment factor of ribosome display thus approaches 10(5) per round. In a second set of experiments, similar results were obtained with the kinases JNK1 and p38 as targets. Again, almost all investigated DARPins obtained after two rounds of ribosome display showed specific binding to the targets used, JNK1 or p38. In all three selection experiments the identified DARPins possess very high specificity for the target kinase. Taken together, the combination of ribosome display and PCA selections allowed the identification of large pools of binders at unparalleled speed. Furthermore, DARPins are applicable in intracellular selections and immunoprecipitations from the extract of eukaryotic cells.  相似文献   

2.
Ribosome display systems are very effective and powerful tools for in vitro screening of transcribed mRNAs that encode proteins (or peptides) with specific (known or unknown) functions. We have modified such a system by exploiting the interaction between a tandemly fused MS2 coat-protein (MSp) dimer and the RNA sequence of the corresponding specific binding motif, C-variant (or Cv). We placed the MSp dimer at the N-terminus of a nascent protein and the Cv binding motif was attached to the 5' end of the protein's mRNA. This configuration enhanced the stability of the ribosome-mRNA complex. We demonstrate here that this improved ribosome display system provides an effective method for identifying the gene for a protein that binds to a protein of interest. We visualized the formation of polysome complexes in this advanced polysome display by atomic force microscopy (AFM) and found that the AFM images of polysomes in our system were different from those observed in the case of conventional ribosome display systems. Our results suggest that our technology might usefully complement yeast two-hybrid assays.  相似文献   

3.
Phage display has been instrumental for the success of antibody (Ab) technology. The aim of the present study was to explore phage display of soluble T-cell receptors (TCRs). A library platform that supports engineering and selection of improved TCRs to be used as detection reagents for specific antigen presentation will be very useful. In such applications, high, equal and clone independent display levels are a prerequisite for 'fair' selection. Therefore, we explored how different pIII fusion formats and modes affected the display levels of two murine alpha/beta TCRs. Both are derived from T-cell clones associated with the MOPC315 myeloma model. The results show that the design of the pIII fusion particle significantly affects the subsequent display levels. Furthermore, successful display may be obtained both in phagemid and phage versions. Importantly, improvement of poor display can be achieved by over-expressing the periplasmic chaperone FkpA.  相似文献   

4.
Ribosome display of mammalian receptor domains   总被引:2,自引:0,他引:2  
Many mammalian receptor domains, among them a large number of potential therapeutic target proteins, are highly aggregation-prone upon heterologous expression in bacteria. This severely limits functional studies of such receptor domains and also their engineering towards improved properties. One of these proteins is the Nogoreceptor, which plays a central role in mediating the inhibition of axon growth and functional recovery after injury of the adult mammalian central nervous system. We show here that the ligand binding domain of the Nogoreceptor folds to an active conformation in ternary ribosomal complexes, as formed in ribosome display. In these complexes the receptor is still connected, via a C-terminal tether, to the peptidyl tRNA in the ribosome and the mRNA also stays connected. The ribosome prevents aggregation of the protein, which aggregates as soon as the release from the ribosome is triggered. In contrast, no active receptor was observed in phage display, where aggregation appears to prevent incorporation of the protein into the phage coat. This strategy sets the stage for rapidly studying defined mutations of such aggregation-prone receptors in vitro and to improve their properties by in vitro evolution using the ribosome display technology.  相似文献   

5.
Selection technologies such as phage and ribosome display, which provide a physical linkage between genetic information and encoded polypeptide, are important tools for the engineering of proteins for diagnostic and therapeutic applications. We have recently described a selection strategy called covalent DNA display, in which individual proteins are covalently linked to the cognate encoding DNA template in separate droplets of a water-in-oil emulsion. We here report on the optimization of several experimental steps in covalent DNA display technology, such as the elution conditions and the PCR strategy used for the amplification of selected DNA templates. A PCR assembly strategy was developed, which allows the amplification of the DNA templates over repeated rounds of selection. In addition, we could demonstrate that approximately 50% of the DNA templates form a covalent adduct with the corresponding proteins in the compartments of a water-in-oil emulsion. In model selection experiments, differences in recovery efficiency <100 000 per round of selection could be observed when comparing a specific binding polypeptide with a binder of irrelevant specificity. Furthermore, the optimized protocol was successfully applied for the selection of single domain proteins, capable of specific binding to mouse serum albumin (MSA). A mutant derived from the SH3 domain of the Fyn kinase, with millimolar affinity to MSA, was affinity matured using covalent DNA display and yielded several MSA binding FynSH3 variants with dissociation constants in the 100 nM range.  相似文献   

6.
Phage display of antibody libraries has been widely used for over a decade to generate monoclonal antibodies. Yeast display has been developed more recently. Here the two approaches were directly compared using the same HIV-1 immune scFv cDNA library expressed in phage and yeast display vectors and using the same selecting antigen (HIV-1 gp120). Yeast display was shown to sample the immune antibody repertoire considerably more fully than phage display, selecting all the scFv identified by phage display and twice as many novel antibodies. Positive phage display selection appeared to largely reflect those antibodies that as phage-scFv gave the highest signal in phage ELISAs assessing antigen binding. This signal is thought to reflect the efficiency of expression of folded scFv at the phage surface. Increased access to immune repertoires may increase the rescue of novel antibodies of therapeutic or analytical value that often form a minor part of a typical antibody response.  相似文献   

7.
A robust bacterial display methodology was developed that allows the rapid isolation of peptides that bind to arbitrarily selected targets with high affinity. To demonstrate the utility of this approach, a large library (5 x 10(10) clones) was constructed composed of random 15-mer peptide insertions constrained within a flexible, surface exposed loop of the Escherichia coli outer membrane protein A (OmpA). The library was screened for binding to five unrelated proteins, including targets previously used in phage display selections: human serum albumin, anti-T7 epitope mAb, human C-reactive protein, HIV-1 GP120 and streptavidin. Two to four rounds of enrichment (2-4 days) were sufficient to enrich peptide ligands having high affinity for each of the target proteins. Strong amino acid consensus sequences were apparent for each of the targets tested, with up to seven consensus residues. Isolated peptide ligands remained functional when expressed as insertional fusions within a monomeric fluorescent protein. This bacterial display methodology provides an efficient process for identifying peptide affinity reagents and should be useful in a variety of molecular recognition applications.  相似文献   

8.
Isolation of antibodies to antigens that are either unstable, exist in multiple morphologies or have very limited availability can be prohibitively difficult. Here we describe a novel technique combining the capabilities of phage display antibody technology and atomic force microscopy (AFM) that is used to isolate antibody fragments that bind to a specific morphology of the target antigen, alpha-synuclein. AFM imaging allows us to both visualize the presence and morphology of the target antigen as well as to monitor the efficiency of each step in the bio-panning process. We demonstrate that phage displayed antibodies specific to the target antigen morphology can be isolated after only two rounds of selection. The target antigen, alpha-synuclein, has been correlated with the Parkinson's disease (PD). Accumulation of alpha-synuclein fibrillar aggregates into Lewy body inclusions is a hallmark feature of PD. While alpha-synuclein can form several different aggregate morphologies including oligomers, protofibrils and fibrils, the role of these morphologies in the progression of PD is not known. The successful selection of the recombinant antibody described here can have potential therapeutic value since the single-chain fragment variable (scFv) can be expressed intracellularly to control folding and toxicity of the specific protein aggregates.  相似文献   

9.
Selection and characterization of HER2/neu-binding affibody ligands   总被引:9,自引:0,他引:9  
Affibody® (affibody) ligands that are specific for the extracellulardomain of human epidermal growth factor receptor 2 (HER2/neu)have been selected by phage display technology from a combinatorialprotein library based on the 58 amino acid residue staphylococcalprotein A-derived Z domain. The predominant variants from thephage selection were produced in Escherichia coli, purifiedby affinity chromatography, and characterized by biosensor analyses.Two affibody variants were shown to selectively bind to theextracellular domain of HER2/neu (HER2-ECD), but not to controlproteins. One of the variants, denoted His6-ZHER2/neu:4, wasdemonstrated to bind with nanomolar affinity (  相似文献   

10.
11.
Affibody molecules specific for the epidermal growth factor receptor (EGFR) have been selected by phage display technology from a combinatorial protein library based on the 58-residue, protein A-derived Z domain. EGFR is overexpressed in various malignancies and is frequently associated with poor patient prognosis, and the information provided by targeting this receptor could facilitate both patient diagnostics and treatment. Three selected Affibody variants were shown to selectively bind to the extracellular domain of EGFR (EGFR-ECD). Kinetic biosensor analysis revealed that the three monomeric Affibody molecules bound with similar affinity, ranging from 130 to 185 nM. Head-to-tail dimers of the Affibody molecules were compared for their binding to recombinant EGFR-ECD in biosensor analysis and in human epithelial cancer A431 cells. Although the dimeric Affibody variants were found to bind in a range of 25-50 nM affinities in biosensor analysis, they were found to be low nanomolar binders in the cellular assays. Competition assays using radiolabeled Affibody dimers confirmed specific EGFR-binding and demonstrated that the three Affibody molecules competed for the same epitope. Immunofluorescence microscopy demonstrated that the selected Affibody dimers were initially binding to EGFR at the cell surface of A431, and confocal microscopy analysis showed that the Affibody dimers could thereafter be internalized. The potential use of the described Affibody molecules as targeting agents for radionuclide based imaging applications in various carcinomas is discussed.  相似文献   

12.
Here we describe the first reported use of a Gram-positive bacterial system for the selection of affinity proteins from large combinatorial libraries displayed on the surface of Staphylococcus carnosus. An affibody library of 3 x 10(9) variants, based on a 58 residue domain from staphylococcal protein A, was pre-enriched for binding to human tumor necrosis factor-alpha (TNF-alpha) using one cycle of phage display and thereafter transferred to the staphylococcal host ( approximately 10(6) variants). The staphylococcal-displayed library was subjected to three rounds of flow-cytometric sorting, and the selected clones were screened and ranked by on-cell analysis for binding to TNF-alpha and further characterized using biosensor analysis and circular dichroism spectroscopy. The successful sorting yielded three different high-affinity binders (ranging from 95 pM to 2.2 nM) and constitutes the first selection of a novel affinity protein using Gram-positive bacterial display. The method combines the simplicity of working with a bacterial host with the advantages of displaying recombinant proteins on robust Gram-positive bacteria as well as using powerful flow cytometry in the selection and characterization process.  相似文献   

13.
High-throughput protease assays are used to identify new protease inhibitors which have the potential to become valuable therapeutic products. Antibodies are of great utility as affinity reagents to detect proteolysis products in protease assays, but isolating and producing such antibodies is unreliable, slow and costly. It has been shown previously that PDZ domains can also be used to detect proteolysis products in high-throughput homogeneous assays but their limited natural repertoire restricts their use to only a few peptides. Here we show that directed evolution is an efficient way to create new PDZ domains for detection of protease activity. We report the first use of phage display to alter the specificity of a PDZ domain, yielding three variants with up to 25-fold increased affinity for a peptide cleavage product of HIV protease. Three distinct roles are assigned to the amino acid substitutions found in the selected variants of the NHERF PDZ domain: specific 'beta1-beta3' interaction with ligand residue -1, interactions with ligand residues -4 to -7 and improvement in phage display efficiency. The variants, having affinities as high as 620 nM, display improvements in assay sensitivity of over 5-fold while requiring smaller amounts of reagents. The approach demonstrated here leads the way to highly sensitive reagents for drug discovery that can be isolated more reliably and produced less expensively.  相似文献   

14.
GM-CSF (granulocyte-macrophage colony stimulating factor) plays a central role in inflammatory processes. Treatment with antibodies neutralizing murine GM-CSF showed significant therapeutic effects in mouse models of inflammatory diseases. We constructed by phage display technology a human scFv, which could potently neutralize human GM-CSF. At first, a human V(L) repertoire was combined with the V(H) domain of a parental GM-CSF-neutralizing rat antibody. One dominant rat/human scFv clone was selected, neutralizing human GM-CSF with an IC50 of 7.3 nM. The human V(L) of this clone was then combined with a human V(H) repertoire. The latter preserved the CDR 3 of the parental rat V(H) domain to retain binding specificity. Several human scFvs were selected, which neutralized human GM-CSF at low nanomolar concentrations (IC50 > or = 2.6 nM). To increase serum half-life, a branched 40 kDa PEG-polymer was coupled to the most potent GM-CSF-neutralizing scFv (3077) via an additional C-terminal cysteine. PEG conjugation had a negligible effect on the in vitro neutralizing potential of the scFv, although it caused a significant drop in binding affinity owing to a reduced on-rate. It also significantly increased the stability of the scFv at elevated temperatures. In mouse experiments, the PEGylated scFv 3077 showed a significantly prolonged elimination half-life of 59 h as compared with 2 h for the unconjugated scFv version. PEGylated scFv 3077 is a potential candidate for development of a novel antibody therapy to treat pro-inflammatory human diseases.  相似文献   

15.
The R gene of the phage lambda coding for a lysozyme expressedat the end of an infection cycle in Escherichia coli has beencloned in a series of vector plasmids. Two methods for improvingthe efficiency of translation have been tested. First, the useof a bicistronic construction in which the ribosome bindingsite (RBS) of the first cistron is that of a highly expressedgene or the use of a degenerate mixture of synthetic oligonucleotidesfor the optimization of a RBS. The second strategy is more efficient:the analysis of a number of clones reveals that the LaL expressionlevels are increased by a factor between 3 and 6 times comparedwith the clone using the natural RBS. The expression levelsare described by an approximately Gaussian histogram. The translationpromoter that was found to afford the best expression (PL) isunder the control of a thermolabile repressor. Under the expressionconditions, the protein is partially proteolysed. The proteolysisis significantly decreased by adding salt to the growth medium.After optimization, an increase in expression by a factor of40 is obtained compared with the initial conditions. An efficientpurification protocol is described.  相似文献   

16.
The method of simulated annealing can be of use in protein structureprediction by homology modelling where side chain conformationsmust be predicted. In this study an attempt has been made tooptimize a molecular dynamics method for this purpose. Heatingand cooling protocols to maximize the accuracy of the predictionshave been developed. The optimized protocol involves coolingfrom 3000 to 0 K over 20 ps while simultaneously introducingthe non-bonded energy term. The use of a 'soft' non-bonded interactionenergy term in place of a standard 6–12 potential is foundto be important. The reliability of the predictions has beenanalysed in terms of the environment of the residues (solventaccessibility) and the degree of uncertainty in the structure(number of unknown torsion angles). Depending on these factorsthe percentage of unknown side chain torsion angles that arecorrectly predicted within 30° ranges from –50 to75%. Potential problems and limitations of the method are discussed.  相似文献   

17.
RGD peptides targeting alphav-integrins are promising ligands for the generation of vascular targeting agents. We isolated from phage display RGD motif libraries novel high-affinity cyclic RGD peptides by selection on either endothelial or melanoma cells. Although the starting sequences contained only two cysteine residues flanking the RGD motif, several of the isolated peptides possessed four cysteine residues. A high-affinity peptide (RGD10) constrained by only one disulfide bond was used to generate novel lipopeptides composed of a lipid anchor, a short flexible spacer and the peptide ligand conjugated to the spacer end. Incorporation of RGD10 lipopeptides into liposomes resulted in specific and efficient binding of the liposomes to integrin-expressing cells. In vivo experiments applying doxorubicin-loaded RGD10 liposomes in a C26 colon carcinoma mouse model demonstrated improved efficacy compared with free doxorubicin and untargeted liposomes.  相似文献   

18.
We compare the three-dimensional structures of thermitase andof proteinase K determined by X-ray crystallography to a resolutionof 1.4 and 1.48 Å respectively. Both enzymes are relativelystable towards heat and denaturating agents and are representativeof a subgroup of subtilisins characterized by a free SH groupclose to the active site histidine. Even though they have lowsequence homology, the overall tertiary structures are highlyconserved. The high resolution structures are compared in termsof the overall fold of the molecules, the active sites, thecalcium binding sites, disulphide bridge positions, the positionsof the charged residues and the solvent structure. Most subtilisinssuch as thermitase are of prokaryotic origin and proteinaseK is up to now the only known eukaryotic structure.  相似文献   

19.
The homozygous deletion of the phenylalanine at position 508 (DeltaPhe508) in the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) is the most common CF-causing genetic defect. It has been proposed that the propensity of NBD1 to aggregate may lead to a lower display of the CFTR chloride channel to the cell membrane and to the disease, thus opening an avenue for the pharmacological development of CFTR folding correctors. Here, we show that a human monoclonal antibody fragment specific to the folded conformation of NBD1 inhibits the aggregation of NBD1 in vitro. However, in contrast to the previously published observations, we proved experimentally that NBD1 of wild-type and DeltaPhe508 version of CFTR display comparable propensities to aggregate in vitro and that the corresponding full-length CFTR protein reaches the cell membrane with comparable efficiency in mammalian cell expression systems. On the basis of our results, the 'folding defect' hypothesis seems unlikely to represent the causal mechanism for the pathogenesis of CF. A solid understanding of how the DeltaPhe508 deletion leads to the disease represents an absolute requirement for the development of effective drugs against CF.  相似文献   

20.
The A+T-rich genome of the human malaria parasite Plasmodiumfalciparum encodes genes of biological importance that cannotbe expressed efficiently in heterologous eukaryotic systems,owing to an extremely biased codon usage and the presence ofnumerous cryptic polyadenylation sites. In this work we haveoptimized an assembly polymerase chain reaction (PCR) methodfor the fast and extremely accurate synthesis of a 2.1 kb Plasmodiumfalciparum gene (pfsub-1) encoding a subtilisin-like protease.A total of 104 oligonucleotides, designed with the aid of dedicatedcomputer software, were assembled in a single-step PCR. Theassembly was then further amplified by PCR to produce a syntheticgene which has been cloned and successfully expressed in bothPichia pastoris and recombinant baculovirus-infected High FiveTMcells. We believe this strategy to be of special interest asit is simple, accessible and has no limitation with respectto the size of the gene to be synthesized. Used as a systematicapproach for the malarial genome or any other A + T-rich organism,the method allows the rapid synthesis of a nucleotide sequenceoptimized for expression in the system of choice and productionof sufficiently large amounts of biological material for completemolecular and structural characterization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号