首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M.M. Hamdy  R.B. Waterhouse 《Wear》1981,71(2):237-248
The fretting wear of Ti-6Al-4V and Inconel 718 was investigated with a sphere-on-flat configuration. The spherical surface was 100 mm in radius and in all tests was made of the same material as the flat. The normal load was 2.75 N and the frequency of the tangential movement was 50 Hz. Two amplitudes of slip were used, 10 and 40 μm. Tests were conducted in air at temperatures up to 600 °C for the titanium alloy and up to 540 °C for the nickel alloy. High temperature strain gauges enabled a continuous record of the tangential stress to be made and subsequent calculation of the coefficient of friction. Wear was assessed from measurement of the scar volume. At 280 and 540 °C at an amplitude of 40 μm the coefficient of friction and wear rate decreased to a low value on the nickel alloy. This only occurred at 540 °C for the lower amplitude of slip. Low friction and wear are associated with the formation of a “glaze” oxide, which requires a larger slip amplitude at lower temperatures for its formation.The titanium alloy generally exhibited higher coefficients of friction which continued to increase at 106 cycles, although wear rates at 200 °C and above were comparable with those on the nickel alloy. “Glaze” oxide begins to form at 200 °C and is well developed at 400 °C. At 600 °C breakdown occurs owing to local creep of the substrate.  相似文献   

2.
An investigation was conducted to determine the effect of water vapour content in air on the frictional behaviour during fretting of pure metals: iron, aluminium, copper, silver, chromium, titanium and nickel. The fretting experiments were carried out under various humidity levels, ranging from dry air to 50% relative humidity at 23°C. During the experiment the frictional force between fretting surfaces was measured. Pure metals, except iron, were found to have a maximum value of the coefficient of friction during the steady-fretting stage (μs) at a specific humidity (RHmax). Iron showed a rapid decrease in μs with increasing humidity at RHmax. Each pure metal also exhibited maximum fretting wear at RHmax. The value of μs at RHmax for each metal was strongly related to the heat of formation of the lower metal oxide, indicating that the adhesive contact area was larger at RHmax for the fretting of metals with less chemical activity. At high humidity levels water vapour generally reduced the coefficient of friction, μs.  相似文献   

3.
Dry friction and wear tests were performed with self-mated couples of SiC containing 50% TiC, Si3N4---BN, SiC---TiB2 and Si3N4 with 32% TiN at room temperature and 400°C or 800°C.Under room temperature conditions, the friction coefficient of the couple SiC---TiC/SiC---TiC is only half of that of the couple SiC/SiC and the wear is one order of magnitude smaller. At 400°C, it exceeds the friction coefficient of SiC/SiC except at the highest sliding velocity of 3 m s−1. At lower sliding velocities the wear coefficient of SiC---TiC/SiC---TiC is lower than that of SiC/SiC.The couple Si3N4---TiN/Si3N4---TiN exhibits high friction coefficients under all test conditions. At room temperature the wear volume of the self-mated couples of Si3N4 and Si3N4---TiN after a sliding distance of 1000 m is similar, but Si3N4---TiN shows a running-in behaviour. At 800°C the wear coefficient of Si3N4---TiN/Si3N4---TiN is approximately two orders of magnitude smaller than that of Si3N4/Si3N4, and equal to those at room temperature. At 22°C the addition of BN reduces the friction of Si3N4. The wear coefficient is independent of sliding velocity and the self-mated couples showing running-in. Friction and wear increase with increasing temperature. The wear coefficient of SiC---TiB2 above 0.5 m s−1 at 400°C is advantageously near 10−6 mm3 (Nm)−1. With the other test conditions the wear behaviour is similar to SSiC.  相似文献   

4.
Detonation gun (D-gun) spraying is one of the most promising spraying techniques for producing wear-resistance coatings. A thick layer (about 0.3 mm thickness) of WC-25Co with high hardness was covered on Ti-Al-Zr titanium alloy by D-gun spraying and the fretting wear behavior of WC-25Co coatings was studied experimentally on a high precision hydraulic fretting wear test rig. An experimental layout was designed to perform fretting wear tests at elevated temperatures from room temperature (25 °C) to 400 °C in ambient air. In the tests, a sphere (Si3N4 ceramic ball) was designed to rub against a plane (Ti-Al-Zr titanium alloy with or without WC-25Co coatings). It was found that the fretting running regimes of WC-25Co coatings were obviously different from those of Ti-Al-Zr titanium alloy. The mixed fretting regime disappeared in WC-25Co coatings, and the boundaries in the running condition fretting map (RCFM) showed hardly any change as temperature increased. The worn scars were examined using a laser confocal scanning microscope (LCSM), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The results showed that the coefficients of friction (COF) of WC-25Co coatings at elevated temperatures were nearly constant in the partial slip regime and very low in the steady state. The fretting damage of the coatings was very slight. In the slip regime, the WC-25Co coatings exhibited a good wear resistance, and the wear volume of the coatings obviously decreased with increasing tested temperature. The fretting wear mechanisms of WC-25Co coatings were delamination, abrasive wear and oxidation wear at elevated temperature. The oxide debris layer formed at higher temperature was denser and thicker on top of WC-25Co coatings, thus providing more surface protection against fretting wear, which played an important role in the low fretting wear of the coatings.  相似文献   

5.
Previous work by the present workers has indicated that sprayed molybdenum coatings on steel were beneficial in resisting fretting wear in the temperature range 20–300 °C. Beyond this temperature range the oxidation rate of molybdenum increased rapidly and limited its use. Such coatings were mixtures of metal and oxide and provided an elevated temperature “glaze” which appeared to lubricate the surface and to reduce significantly the level of fretting damage. In developing a coating for use over a wider temperature range, mixtures of elements were selected which would provide the possibility of surface glaze formation.Mixtures of Fe-Cr and Ni-Al alloys were arc sprayed onto a low alloy steel and tested under conditions of fretting at 20, 475 and 700 °C. Coatings containing iron and chromium developed a glaze oxide at 475 and 700 °C with resultant low wear. The nickel-based coating did not develop the glaze oxide at 475 °C but did so at 700 °C.  相似文献   

6.
Measurements are presented of friction and wear during sliding of specimens of Ni-Cr alloys containing 0% to 40% Cr on like specimens in air at 20°, 400° and 800 °C. The worn specimens have been examined by optical and scanning electron microscopy, electron probe microanalysis and electron diffraction and microhardness measurements have been made.Under the sliding conditions used, all the alloys show a transition temperature above which a low coefficient of friction and usually relatively low wear are observed after a time and below which these parameters remain relatively high throughout. Above the transition temperatures, the frictiontime loci show sharp reproducible changes from relatively high to low coefficients of friction. Such changes can be associated with the formation of a thermally softened oxide layer (termed a glaze) on the bearing areas during sliding. Once the glaze is formed, very little further wear occurs for the high chromium-content alloys, although further damage does take place with the weaker low chromium-content alloys, especially at temperatures just above the transition temperature. These tribological properties of the glaze are associated with its low shear strength and the strength of the underlying alloy substrate.During sliding at temperatures below the transition temperatures, metal-to-metal contact takes place, although oxide is formed on the bearing area of the low chromium-content alloys even at 20 °C. The friction and wear behaviour is largely determined by the strength and work-hardenability of the alloy.Correlations between the tribological behaviour of these binary Ni-Cr alloys and commercial Nimonic alloys indicate that the trace elements in the latter play only a relatively minor role in determining this behaviour. It is concluded that high strengths and relatively rapid transient oxidation rates of the alloys, and appropriate physical properties of the resulting oxide films, are important qualities of the alloys under the conditions used.  相似文献   

7.
The friction behavior of Ni-, SiO2- and mica sodium silicate-based lubricant composites, which included BN, WS2 and graphite as lubricants, were examined. A ring-on-disk apparatus, in which a solid lubricant composite disk was held against a rotating stainless ring, was used as the test configuration. The tests were run with a load from 62 to 250 N in temperatures from 20 to 800°C in the laboratory environment. The wear surface was characterized by scanning electron microscope and X-ray photo spectroscopy. The major findings were that both mica sodium silicate- and SiO2-based composites failed at above 500°C due to severe wear and surface damage; in contrast, Ni-based composite showed a stable friction coefficient and low wear from 20 to 800°C.  相似文献   

8.
Measurements of friction and wear during sliding of specimens of Nimonic 75, C263, Nimonic 108 and Incoloy 901 on like specimens in air at temperatures from 20 to 800 C are presented. Under the sliding conditions used, all the alloys show a transition temperature, above which low wear and a low coefficient of friction during sliding are observed after a time and below which these parameters remain relatively high throughout. These temperatures are about 150 C for N75, about 200 C for C263 and N108 and between 200 and 300 for Incoloy 901. At given temperatures above the transition temperatures, the coefficient of friction-time loci show sharp, generally very reproducible, changes from relatively high to low coefficients of friction. The times at which these occur decrease with increasing temperature for a given alloy. Such changes can be closely correlated to the formation of a stable, adherent, thermally softened, oxide layer or glaze on the load-bearing areas during sliding. Once the glaze is established, very little further wear takes place. These tribological properties of the glaze are associated with its low shear strength and the high strength of the underlying alloy substrate. They depend more on its physical properties than on its precise chemical composition. It is concluded that high strength, relatively rapid transient oxidation rates, and appropriate physical properties of the resulting oxide films are important qualities in alloys employed under sliding conditions in air at elevated temperatures.  相似文献   

9.
The fretting wear behavior of micro-arc oxidation (MAO) coating of Al2O3 on an aluminum alloy 2024Al flat against a 440C stainless steel ball was investigated in artificial rainwater, artificial seawater and distilled water by using a ball-on-flat configuration with 300 μm amplitude at room temperature for 1 h. The morphology of the wear scars were observed and analyzed using scanning electron microscopy; the 3D-morphology and wear volume-loss were determined using a non-contact optical profilometer. Potentiodynamic anodic polarization was used to measure the corrosion behavior of the MAO coating before and after the corrosion wear test. The influences of the load, frequency and aqueous medium on the friction coefficient and wear volume-loss of the coatings were also analyzed. Results show that the friction coefficient decreases generally with an increase of the frequency in the three aqueous solutions; whereas it presents different variation trends as the load increased. In addition, aqueous environment does significantly influence the friction coefficient, the friction coefficient was the largest when fretting occurred in distilled water, smaller when fretting occurred in rainwater, and the smallest when fretting occurred in seawater. Particularly the remarkable antifriction effect of the seawater is of note. The wear-loss of the MAO coating in the distilled water is the largest at low frequency; however, it increases rapidly in rainwater and seawater at high frequency due to the corrosion effect of Cl? ion as well as its accelerating effect to the wear process, and results in larger wear-loss than that in distilled water, which implies a positive synergism between corrosion and wear.  相似文献   

10.
The friction and reciprocating wear of 316 stainless steel in air has been investigated in the temperature range 20–500°C at constant load using a standard pin and flat geometry. A marked change in wear behaviour occurred above 300°C. From room temperature to 300°C the wear rate decreased slowly with increasing temperature. This was accompanied by an increasing fraction of oxide in the wear debris. At 300°C the debris consisted entirely of oxide with the α Fe2 O3 structure. In this temperature range wear can be explained essentially in terms of mild wear. Above 300°C the wear rate decreased by an order of magnitude and was accompanied by a severely distorted wear surface. There was a high proportion of metallic particles in the wear debris. The surface roughening occurs at an early stage of wear and stops when glazed oxide regions form. The low wear rate is explained in terms of the high hardness of the glazed load-bearing areas and re-incorporation of wear debris into the wear scar.  相似文献   

11.
Zhang  Xiaoling  Prakash  B.  Lauwerens  W.  Zhu  Xiaodong  He  Jiawen  Celis  J.-P. 《Tribology Letters》2003,14(2):131-135
The investigation of the tribological performance of MoS2-based coatings in air of high humidity is critical for the future use of such low-friction and high-wear-resistant coatings in ambient air. Sulfur-deficient MoS x coatings with a basal plane (x = 1.3) and a random (x = 1.8) crystallographic orientation were produced by planar magnetron sputtering. The coefficient of friction and the wear loss of MoSx coatings in comparison with TiN and amorphous TiB2 coatings were investigated in bi-directional sliding fretting tests performed in ambient air of different relative humidity. The wear rate expressed as a volumetric loss per unit of dissipated energy was determined. From these results, the best friction and wear performance was achieved with basal-plane-oriented MoS x coatings tested at a relative humidity in the range of 10-50%. A coefficent of friction of 0.06-0.08 and a wear rate of 4 × 103 m3J-1, at a normal load of 1 N and a fretting frequency of 10 Hz, were recorded for that type of MoS x coatings.  相似文献   

12.
The tribological characteristics of low-pressure plasma-sprayed (LPPS) Al2O3 coating sliding against alumina ball have been investigated from room temperature to 800 °C. These friction and wear data have been compared quantitatively with those of bulk sintered alumina to obtain a better understanding of wear mechanisms at elevated temperatures. The friction and wear of Al2O3 coating show a strong dependence on temperature, changing from a mild to a severe wear regime with the increase of temperature. The coefficient of friction at room temperature is approximately 0.17 to 0.42, depending on applied load. The tribochemical reaction between the coating surface and water vapor in the environment and the presence of the hydroxide film on the Al2O3 coating reduce the friction and wear at room temperature as contrasted to those of bulk sintered alumina. At intermediate temperatures, from 400 to 600 °C, the friction and wear behavior of Al2O3 coating depends on the inter-granular fracture and pull-out of Al2O3 grains. At above 700 °C, formation and deformation of fine grain layer, and abrasive wear in the form of removal of fine alumina grains further facilitate the friction and wear process of Al2O3 coating.  相似文献   

13.
A. Iwabuchi  T. Kayaba  K. Kato 《Wear》1983,91(3):289-305
Oxidative wear is significant in fretting wear when sufficient oxygen is supplied. In vacuum, however, oxide does not form readily. In this paper friction and wear behaviours were studied at various atmospheric pressures in order to clarify the effect of ambient pressure on them.Experiments were conducted with 0.45% C steel at ambient pressures from 1.0 × 105 to 1.3 × 10?3 Pa. The load was 14 N, the peak-to-peak slip amplitudes were 35 and 110 μm and the frequency was usually 8.3 Hz.Friction behaviours are characterized into three types according to the ambient pressure: 1.0 × 105 ? 10 Pa, 10 ? 10?1 Pa and below 10?1 Pa. The coefficient of friction increases with a decrease in ambient pressure below 1 Pa. The critical pressure in fretting is found to be 10 Pa, above which the oxidation rate is independent of the ambient pressure and α-Fe2O3 is formed. Wear decreases with ambient pressure below the critical pressure where Fe3O4 is formed. Adhesive transfer of metallic debris occurs below 10?1 Pa.The relationship between the coefficient of friction and oxide thickness is obtained analytically, and the effect of frequency on the oxidation rate is considered.  相似文献   

14.
Inconel 690 alloy is used in nuclear power plant steam generator tubes. Fretting fatigue experiments were performed on Inconel 690 specimens at room temperature and at the nuclear power plant operating temperature of 320 °C. By comparing the fretting fatigue test data at room temperature and 320 °C, this study analyzed the change in characteristics related to the fatigue limit at 107 cycles. In addition, this study attempted to measure changes in the friction force for repetitive cycles in fretting fatigue tests, and analyzed the mechanism of fretting fatigue by observing the fracture surfaces and performing spectrum analysis.  相似文献   

15.
A recent investigation suggests that selected oxides perform well as additives in molybdenum disulphide (MoS2) because of their ability to soften at asperity contacts with the result that the solid lubricant can attain and retain a preferred tribological orientation.This research determined the effectiveness of boric oxide (B2O3), when used as an additive in MoS2, for substrate temperatures ranging from 21°C to 316°C. This range was used to allow the asperity contact temperature to vary below and above the softening point of B2O3. It was found that a moderate friction coefficient and high wear, which is attributed to the additive acting abrasively, occurred when the asperity contact temperature was well below the softening point of the oxide. When the asperity contact temperature neared the softening point of the oxide, the friction coefficient increased dramatically and wear volume was reduced. It is postulated that B2O3 acted adhesively at the interface resulting in a higher coefficient of friction, and wear decreased due to an attainment of a preferred orientation by the MoS2. For asperity contact temperatures significantly above the softening point of B2O3, the friction coefficient returned to about the same value as for temperatures below the softening point. It is speculated that wear continued to increase moderately because of localized melting of the B2O3, permitting the MoS2 to be removed from the interface. These observations support a hypothesis that an additive, such as boric oxide, can soften as the asperity contact temperature approaches the softening point temperature of the additive so that the overall tribological conditions may be improved resulting in reduced interfacial wear. Significant changes in temperature, load or sliding velocity would, of course, dramatically alter the wear characteristics observed at the interface.  相似文献   

16.
The evolution of microstructures in the glaze layer formed during limited debris retention sliding wear of Nimonic 80A against Stellite 6 at 750 °C and a sliding speed of 0.314 m s−1 (7 N applied load, 4522 m sliding distance) was investigated using scanning electron microscopy (SEM), energy dispersive analysis by X-ray (EDX), X-ray diffraction (XRD), scanning tunnelling microscopy (STM) and transmission electron microscopy (TEM). The collected data indicate the development of a wear resistant nano-structured glaze layer. The process of ‘fragmentation’ involving deformation, generation of dislocations, formation of sub-grains and their increasing refinement causing increasing misorientation was responsible for the formation of nano-structured grains. The rapid formation of this glaze layer from primarily cobalt–chromium debris transferred from (and also back to) the surface of the Stellite 6, kept wear of both the Nimonic 80A and Stellite 6 to very low levels.However, increasing the sliding speed to 0.905 m s−1 (750 °C) suppressed glaze formation with only a patchy, unstable glaze forming on the Stellite 6 counterface and an absence of glaze development on the Nimonic 80A sample (the Nimonic 80A surface was covered with at most, a very thinly smeared layer of oxide). The high levels of oxide debris generated at 0.905 m s−1 instead acted as a loose abrasive assisting wear of especially the Nimonic 80A. This behaviour was attributed to a change in oxide chemistry (due to the dominance of nickel and chromium oxides generated from the Nimonic 80A) resulting in poor oxide sintering characteristics, in combination with increased mobility and reduced residency of the oxide debris at 0.905 m s−1.  相似文献   

17.
Tribological properties of TiO2 coatings synthesized by micro-arc oxidation (MAO) on the surface of TC4 titanium alloys were investigated at the fretting contact against 440C stainless steel in simulated body fluid (SBF). Fretting experiments were carried out by ball-on-flat contact at various loads for 1 h, with an amplitude of 100 μm and a frequency of 5 Hz. Results show that MAO TiO2 coatings presented good tribological properties with lower friction coefficient in SBF. Less wear volume was observed for MAO TiO2 coatings compared with that for TC4 alloy. At lower load, the wear mechanism of MAO TiO2 coatings was dominated to abrasive wear. With an increase of normal load, however, fretting corrosion increased due to chemical reactions with SBF, and therefore, fretting fatigue coexisting with abrasive wear became the predominant mode.  相似文献   

18.
This paper describes fretting wear behaviour of low friction CoCrAlY-MoS2 coatings on titanium alloy substrates in terms of dissipated energy and friction coefficient. Experimental characterisation was achieved by measuring the friction coefficient vs fretting cycles, or slid distance. Test results were analysed using exponential evolution functions for fretting damage. Dissipated energy was derived, and predicted and measured values compared. Quantitative evaluation of the fretting damage was performed by measuring substrate area emerged. Results show that the friction coefficient evolution rate of CoCrAlY-MoS2 coating correlates well with the damaged area fraction and the accumulated dissipated energy.  相似文献   

19.
The potential of coatings to protect components against wear and to reduce friction has led to a large variety of protective coatings. In order to check the success of coating modifications and to find solutions for different purposes, initial tests with laboratory tribometers are usually done to give information about the performance of a coating. Different Ti‐based coatings (TiN, Ti(C,N), and TiAlN) and NiP were tested in comparison to coatings with an additional diamond‐like carbon (DLC) top coating. Tests were done in laboratory air at room temperature with oscillating sliding (gross slip fretting) with a ball‐on‐disc arrangement against a ceramic ball (Al2O3). Special attention was paid to possible effects of moisture (relative humidity). The coefficient of friction was measured on line, and the volumetric wear at the disc was determined after the test from microscopic measurements of the wear scar and additional profiles. The friction and wear behaviour is quite different for the different coatings and depends more or less on the relative humidity. The DLC coating on top of the other coatings reduces friction and wear considerably. In normal and in moist air the coefficient of wear of the DLC top‐layer coating is significantly less than 10−6 mm3/Nm and the coefficient of friction is below 0.1. In dry air, however, there is a certain tendency to high wear and high friction. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
In the present study, hybrid friction materials were manufactured using ceramic and basalt fibers. Ceramic fiber content was kept constant at 10 vol% and basalt fiber content was changed between 0 to 40 vol%. Mechanical properties and friction and wear characteristics of friction materials were determined using a pin-on-disc type apparatus against a cast iron counterface in the sliding speeds of 3.2–12.8 m/s, disc temperature of 100–350 °C and applied loads of 312.5–625 N. The worn surfaces of the specimens were examined by SEM. Experiments show that fiber content has a significant influence on the mechanical and tribological properties of the composites. The friction coefficient of the hybrid friction materials was increased with increasing additional basalt fiber content. But the specific wear rates of the composites decreased up to 30 vol% fiber content and then increased again above this value. The wear tests showed that the coefficient of friction decreases with increasing load and speed but increases with increasing disc temperature up to 300 °C. The most important factor effecting wear rate was the disc temperature followed by sliding speed. The materials showing higher specific wear rates gave relatively coarser wear particles. XRD studies showed that Fe and Fe2O3 were present in wear debris at severe wear conditions which is indicating the disc wear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号