首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscarinic and NMDA receptors contribute to post-traumatic hypersensitivity to secondary ischemia. However, the effect of these receptor antagonists on behavior and CA1 neuronal death after traumatic brain injury (TBI) with acute (1 h after TBI) forebrain ischemia has not been systematically assessed. We examined cognitive and motor dysfunction and the relationship of behavior deficits to neuronal death in this model using muscarinic and NMDA antagonists. Three behavioral groups (n=10/group) of Wistar rats were subjected to mild TBI and 6 min of forebrain ischemia imposed 1 h after TBI with 45 days survival. Motor and spatial memory performance were assessed using the rotarod task and Morris water maze. Seven additional groups (n=6/group) were evaluated only for CA1 death after 7 days survival following sham, individual or combined injury with and without drug treatments. Rats were given 0.3 mg/kg MK-801 (M) and 1.0 mg/kg scopolamine (S) alone or combined (M-S) before or 45 min after TBI. Rotarod performance was tested at days 1-5 and maze performance on days 11-15 and 40-44 after M-S treatment. The 7-day studies showed M-S treatment (p<0.01) reduced CA1 neuronal death better than either S or M alone. Behavioral groups had inadvertent post-ischemic hypothermia that decreased CA1 death and likely influenced behavioral morbidity. M-S given before TBI (p<0.01) decreased memory deficits on day 15, while M-S treatment given after TBI was ineffective. Unexpectedly, M-S treatment before or after TBI produced transient motor deficits (p<0. 01). Memory improvement occurred independent of CA1 death.  相似文献   

2.
Nitric oxide synthase (NOS) is distributed within the brain, and nitric oxide (NO) is felt to be involved in the pathophysiology of deterioration after head injury and cerebral ischemia. This study determined the levels of the stable end products of NOS (NOx=nitrite+nitrate) after traumatic brain injury (TBI) and transient cerebral ischemia. A fluorometric assay using nitrate reductase and the NADPH regenerating system was used to quantitate NOx in ultrafiltered (10-kDa cutoff) cortical and hippocampal extracts after reduction of nitrate. In TBI rats, both the plasma and tissue showed a sharp increase in NOx levels 5 min after injury. Plasma NOx returned to control levels by 2 h after injury. Ipsilateral-cortex NOx levels returned to control levels approximately 6 h after injury and remained constant from 6-24 h. Contralateral-cortex returned near to control levels after 1 h. Hippocampus also followed a similar trend. In gerbils, there was a significant elevation in tissue NOx levels immediately after 10 min transient cerebral ischemia, which gradually returned to control levels over 24 h reperfusion. This striking burst of NO synthesis immediately after injury is clearly evident whether the injury is head trauma or ischemia, or whether the measurements were performed on tissue or plasma. It is unknown whether endothelial NOS, neuronal NOS, or both caused the elevation of the NO end products seen after the CNS insults.  相似文献   

3.
4.
As part of a prospective study of the cerebrovascular effects of head injury, 54 moderate and severely injured patients underwent 184 133Xe-cerebral blood flow (CBF) studies to determine the relationship between the period of maximum blood flow and outcome. The lowest blood flows were observed on the day of injury (Day 0) and the highest CBFs were documented on postinjury Days 1 to 5. Patients were divided into three groups based on CBF values obtained during this period of maximum flow: Group 1 (seven patients), CBF less than 33 ml/100 g/minute on all determinations; Group 2 (13 patients), CBF both less than and greater than or equal to 33 ml/100 g/minute; and Group 3 (34 patients), CBF greater than or equal to 33 ml/100 g/minute on all measurements. For Groups 1, 2, and 3, mean CBF during Days 1 to 5 postinjury was 25.7 +/- 4, 36.5 +/- 4.2, and 49.4 +/- 9.3 ml/100 g/minute, respectively, and PaCO2 at the time of the CBF study was 31.4 +/- 6, 32.7 +/- 2.9, and 33.4 +/- 4.7 mm Hg, respectively. There were significant differences across Groups 1, 2, and 3 regarding mean age, percentage of individuals younger than 35 years of age (42.9%, 23.1%, and 76.5%, respectively), incidence of patients requiring evacuation of intradural hematomas (57.1%, 38.5%, and 17.6%, respectively) and incidence of abnormal pupils (57.1%, 61.5%, and 32.4%, respectively). Favorable neurological outcome at 6 months postinjury in Groups 1, 2, and 3 was 0%, 46.2%, and 58.8%, respectively (p < 0.05). Further analysis of patients in Group 3 revealed that of 14 with poor outcomes, six had one or more episodes of hyperemia-associated intracranial hypertension (simultaneous CBF > 55 ml/100 g/minute and ICP > 20 mm Hg). These six patients were unique in having the highest CBFs for postinjury Days 1 to 5 (mean 59.8 ml/100 g/minute) and the most severe degree of intracranial hypertension and reduced cerebral perfusion pressure (p < 0.0001). These results indicate that a phasic elevation in CBF acutely after head injury is a necessary condition for achieving functional recovery. It is postulated that for the majority of patients, this rise in blood flow results from an increase in metabolic demands in the setting of intact vasoreactivity. In a minority of individuals, however, the constellation of supranormal CBF, severe intracranial hypertension, and poor outcome indicates a state of grossly impaired vasoreactivity with uncoupling between blood flow and metabolism.  相似文献   

5.
D Awasthi  DF Church  D Torbati  ME Carey  WA Pryor 《Canadian Metallurgical Quarterly》1997,47(6):575-81; discussion 581-2
BACKGROUND: Free radicals may be involved in the pathophysiology of traumatic brain injury (TBI) through oxidative damage of neurovascular structures. Endogenous antioxidants, such as ascorbate and alpha-tocopherol, may play a critical role in combating these oxidative reactions and their oxidized products can serve as an important index of oxidative stress. METHODS: We used electron spin resonance (ESR) spectroscopy and in vivo spin trapping (reaction of an organic compound with free radical species) to detect the possible generation of free radicals after TBI. Injury was inflicted by a weight drop technique over the head (5.7 kg-cm). Rats were intravenously infused with either 1 mL, 0.1 M of the spin trap, alpha-phenyl-N-tert-butyl nitrone (PBN), or an equivalent volume of saline immediately before TBI or sham-injury. Animals were divided into four groups: (1) Group I: PBN-infused sham-injured, (2) Group II: PBN-infused injured, (3) Group III: saline-infused sham-injured, and (4) Group IV: saline-infused injured. Additional groups of saline-infused uninjured, saline-infused, and PBN-infused injured animals were used for histopathology. Sixty minutes after TBI or sham-injury, rats were again anesthetized and decapitated. The brains were removed within 1 minute, homogenized, and extracted for lipids. The extracts were analyzed by ESR spectroscopy. Brain ascorbic acid (AA) concentration was determined spectrophotometrically, using the ascorbate oxidase assay. RESULTS: No PBN spin adduct signals (indicating trapped free radical species) were visible 60 minutes after TBI. All groups of rats showed an ascorbyl free radical signal. The ascorbyl signal intensity (AI) was, however, significantly higher in the injured rats, while the brain (AA) was significantly reduced. In addition, the ratio of AI/AA, which eliminates the effect of variable ascorbate concentrations in the brain, was also significantly higher in the injured animals. CONCLUSIONS: We conclude that 60 minutes following TBI there was a significantly increased level of oxidative stress in the brain. This may reflect formation of free radical species with subsequent interaction with ascorbate (antioxidant) during the 60 minute period. The lack of PBN spin adduct signals 1 hour after TBI may indicate that free radical generation is time dependent and might be detectable earlier or later than the 60 minute period.  相似文献   

6.
Increasing clinical and experimental evidence suggests that traumatic brain injury (TBI) elicits an acute inflammatory response. In the present study we investigated whether white blood cells (WBC) are activated in the cerebral microcirculation early after TBI and whether WBC accumulation affects the posttraumatic cerebrovascular response. Twenty-four anesthetized rabbits had chronic cranial windows implanted 3 weeks before experimentation. Animals were divided into four experimental groups and were studied for 7 hours (groups I, IIa, and III) or 2 hours (group IIb). Intravital fluorescence videomicroscopy was used to visualize WBC (rhodamine 6G, intravenously), pial vessel diameters, and blood-brain barrier (BBB) integrity (Na+-fluorescein) at 6 hours (groups I, IIa, and III) or 1 hour (group IIb) after TBI. Group I (n = 5) consisted of sham-operated animals. Groups IIa (n = 7) and IIb (n = 5) received fluid-percussion injury at 1 hour. Group III (n = 7) received fluid-percussion injury and 1 mg/kg anti-adhesion monoclonal antibody (MoAb) "IB4" 5 minutes before injury. Venular WBC sticking, intracranial pressure (ICP), and arterial vessel diameters increased significantly for 6 hours after trauma. IB4 reduced WBC margination and prevented vasodilation. Intracranial pressure was not reduced by treatment with IB4. Blood-brain barrier damage occurred at 1 hour but not at 6 hours after TBI and was independent of WBC activation. This first report using intravital videomicroscopy to study the inflammatory response after TBI reveals upregulated interaction between WBC and cerebral endothelium that can be manipulated pharmacologically. White blood cell activation is associated with pial arteriolar vasodilation. White blood cells do not induce BBB breakdown less than 6 hours after TBI and do not contribute to posttraumatic ICP elevation. The role of WBC more than 6 hours after TBI should be investigated further.  相似文献   

7.
N-Nitrosodibenzylamine (NDBzA) is a contaminant found frequently in rubber baby bottle nipples and pacifiers. To evaluate more fully the mutagenic potential and analyse the molecular nature of possible mutations induced in vivo, we have studied the mutagenicity of NDBzA in vivo using the MutaMouse system. NDBzA, suspended in olive oil, was administered orally once to male mice at different doses (0, 30, 100, 425 and 750 mg/kg) and the mice were killed 30 and 90 days after treatment. As a positive control, and to compare relative mutagenicity, N-nitrosodimethylamine (NDMA) was also administered to animals in the same experiment at doses of 0, 2, 6 and 10 mg/kg. Mutant frequencies were increased in both 30 and 90 day liver samples, but not in bone marrow, after both NDBzA and NDMA treatment. However, NDBzA was >100 times less mutagenic than NDMA. A total of 81 mutants obtained from liver samples of treated animals (750 mg/kg) were characterized by DNA sequencing. While spontaneous mutations in transgenic mice have been characterized previously by a preponderance of G:C-->A:T transitions, mainly at 5'-CpG-3' dinucleotide sites, the predominant type of NDBzA-induced mutation in this study was transversion, mainly G:C-->T:A changes. The molecular characteristics of mutations induced by NDBzA indicate that they may arise from specific unidentified DNA adducts and benzylation appears to be the primary mechanism involved in formation of these DNA adducts.  相似文献   

8.
BACKGROUND: Babesiosis, a zoonosis caused by the protozoan Babesia microti, is usually not treated when the symptoms are mild, because the parasitemia appears to be transient. However, the microscopical methods used to diagnose this infection are insensitive, and few infected people have been followed longitudinally. We compared the duration of parasitemia in people who had received specific antibabesial therapy with that in silently infected people who had not been treated. METHODS: Forty-six babesia-infected subjects were identified from 1991 through 1996 in a prospective, community-based study designed to detect episodes of illness and of seroconversion among the residents of southeastern Connecticut and Block Island, Rhode Island. Subjects with acute babesial illness were monitored every 3 months for up to 27 months by means of thin blood smears, Bab. microti polymerase-chain-reaction assays, serologic tests, and questionnaires. RESULTS: Babesial DNA persisted in the blood for a mean of 82 days in 24 infected subjects without specific symptoms who received no specific therapy. Babesial DNA persisted for 16 days in 22 acutely ill subjects who received clindamycin and quinine therapy (P=0.03), of whom 9 had side effects from the treatment. Among the subjects who did not receive specific therapy, symptoms of babesiosis persisted for a mean of 114 days in five subjects with babesial DNA present for 3 or more months and for only 15 days in seven others in whom the DNA was detectable for less than 3 months (P<0.05); one subject had recrudescent disease after two years. CONCLUSIONS: When left untreated, silent babesial infection may persist for months or even years. Although treatment with clindamycin and quinine reduces the duration of parasitemia, infection may still persist and recrudesce and side effects are common. Improved treatments are needed.  相似文献   

9.
OBJECTIVE: To evaluate the effects of hypocapnia on the systemic and hepatic circulations and oxygenation values in patients with head injury. DESIGN: Open-label, prospective study. SETTING: University hospital, department of anesthesiology and intensive care unit. PATIENTS: Eleven mechanically ventilated patients with isolated head trauma and stable hemodynamic status. INTERVENTIONS: At the beginning of the study, each patient presented with normocapnic ventilation. Mechanical hyperventilation was then adjusted to obtain stable hypocapnia over an interval of 24 hrs. Cardiac output and other systemic hemodynamic parameters were measured, using a pulmonary artery catheter. Hepatic parameters were measured via a catheter inserted into the hepatic vein. Total hepatic blood flow was determined by the Fick principle using a continuous infusion of indocyanine green. Arterial and hepatic venous blood gases were sampled to determine systemic and hepatic-splanchnic oxygenation. Measurements were done at the end of the four phases: a) 30 mins of normocapnia (N); b) 30 mins of hypocapnia (H0); c) 3 hrs of hypocapnia (H3); and d) 24 hrs of hypocapnia (H24). Intracranial pressure and cerebral perfusion pressure were hourly monitored throughout the study. MEASUREMENTS AND MAIN RESULTS: There were no significant changes in systemic hemodynamic parameters. The hepatic blood flow index did not differ from normocapnia (N 1.8 +/- 0.4 L/min/m2) to hypocapnia (H0 1.6 +/- 0.3 L/min/m2; H3 1.7 +/- 0.4 L/min/m2; H24 1.7 +/- 0.4 L/min/m2). The ratio of hepatic blood flow index to cardiac index remained stable throughout the study. Hypocapnia did not affect hepatic-splanchnic oxygen delivery and consumption. CONCLUSIONS: Hypocapnic hyperventilation does not alter hepatic hemodynamic parameters in patients with head injury. This result may be related to the lack of changes in cardiac output or in the hepatic vasoreactivity. Moreover, hypocapnia does not modify hepatic-splanchnic oxygenation. Thus, in case of intracranial hypertension, hypocapnia might be used without undesirable effect on the hepatic-splanchnic perfusion.  相似文献   

10.
E Tasdemiroglu 《Canadian Metallurgical Quarterly》1996,138(5):570-8; discussion 578-9
Anaesthetized male rats (n = 86) from both Long-Evans strain (LES) (n = 43) and Wistar strain (WS) (n = 43) were utilized for the experiments. While three animals from each strain were used as control, 40 rats from each strain underwent up to 10 minutes forebrain ischaemia by bilateral common carotid artery (CCA) occlusion combined with systemic hypotension [Mean Arterial Blood Pressure (MABP) = 50 mm/Hg]. The animals from each strain were divided into four (n = 10) groups. In both strains, groups (n = 10) 1 and 2, temporalis muscle (TM) and body temperatures of the animals were kept at 36-37 degrees C during the experiments. The groups 1 and 2 were killed in 3 and 7 days after the ischaemic insult, respectively. The groups 3 and 4 were also killed 3 and 7 days after the ischaemic insult, but the forebrain ischaemia was carried out under mild cerebral hypothermia (TM temperature = 33 degrees C). Pyramidal neurons of the hippocampal CA1 region from each group was evaluated semiquantitatively. In WS, groups 1 and 2 showed moderate and severe neuronal loss in the CA1 region, respectively. However, in LES while the group 1 (3 days survival) did not show any neuronal loss, group 2 showed moderate neuronal loss of the CA1 region. While in group 3 (3 days survival, hypothermia) WS and LES, hypothermia protected the CA1 region, group 4 of LES showed mild neuronal loss. However WS, group 4 (7 days survival, hypothermia) showed severe neuronal loss of the CA1 region. It was concluded that mild hypothermia during ischaemic insults did not prevent the delayed postischaemic neuronal damage of the hippocampal CA1 region of both strains, and following 10 minutes forebrain ischaemia, male LES rats were found more resistant than male WS rats to neuronal loss of the CA1 region.  相似文献   

11.
Investigated 16 patients with diffuse or contusional brain damage and 8 patients with focal lesions 5–22 mo postinjury, using single proton emission computed tomography (SPECT) cerebral blood flow (CBF) measurements and neuropsychological examination. All Ss were aged 16–64 yrs. Compared with 16 controls, the diffuse group showed significant differences on 13 of 24 measures after correction for premorbid differences, whereas the focal group was significantly impaired on only 3 tests after correction. SPECT apparently identified abnormalities not demonstrated on magnetic resonance (MR) imaging and vice versa. Abnormal regional CBF seemed to be related to neuropsychological defects. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
OBJECTIVE: Hypercapnic cerebral vasodilation appears to be endothelium-dependent, as it involves nitric oxide and prostaglandins. Since chronic hypertension has been associated with impaired endothelial function, we designed a study to find out whether hypercapnic cerebral blood flow and its nitric oxide- and prostaglandin-sensitive component is reduced in spontaneously hypertensive rats (SHR) compared with normotensive controls. METHODS: Cerebral blood flow was measured in enflurane-anesthetized SHR (n=53), Wistar-Kyoto (WKY, n=20) and Sprague-Dawley (n=50) rats using the hydrogen clearance method. Cerebral blood flow was measured during eucapnia and hypercapnia; it was also assessed after administering either nonisoform-selective or isoform-selective neuronal nitric oxide synthase inhibitors and during inhibition of prostaglandin production. RESULTS: Hypercapnic cerebral blood flow did not differ among the strains. Nitric oxide synthase inhibition with intracortical N(G)-monomethyl-L-arginine reduced hypercapnic cerebral blood flow in SHR by 23+/-4% and in Sprague-Dawley rats by 23+/-7% without affecting eucapnic flow. Intraperitoneal administration of the inhibitor of neuronal nitric oxide synthase, 7-nitroindazole, reduced eucapnic flow by 18+/-5% in SHR and 27+/-5% in WKY rats, and hypercapnic flow by 48+/-3 and by 51+/-6%, respectively. Indomethacin produced a similar decrease in hypercapnic flow in Sprague-Dawley rats and SHR (49+/-5 and 62+/-4%, respectively). CONCLUSION: Hypercapnic cerebral blood flow was not impaired in SHR. The contribution of nitric oxide- and prostaglandin-dependent vasodilation appeared to be intact Our results are consistent with the hypothesis that neuronal rather than endothelial production of nitric oxide may be responsible for maintaining hypercapnic cerebral vasodilation in SHR.  相似文献   

13.
BACKGROUND: The leading cause of death and disability in patients suffering from aneurysmal subarachnoid hemorrhage (SAH) is cerebral vasospasm, a persistent, progressive, and often irreversible constriction of cerebral arteries. A wide array of pathological changes occur in cerebral arteries following SAH, with endothelial injury being the earliest and most consistent one. Since intact endothelium modulates many reflexes that influence vascular tone, damage to them may represent a significant contributor to cerebral vasospasm. METHODS: Changes in local cerebellar blood flow (LCBF) and pathological alterations in major cerebral arteries were studied and compared in rats at various time intervals following SAH. SAH induced by the subarachnoid injection of 0.3 ml of whole blood. Sham rats received a subarachnoid injection of 0.3 ml of isotonic saline. RESULTS: Except for an immediate but transient decrease, LCBF remained unchanged over a 3 day period following saline injection. Likewise, there were no pathological alterations in cerebral arteries of saline-injected rats. In contrast, the subarachnoid injection of whole blood produced significant changes in both LCBF and cerebral arteries. Within 30 minutes post-blood injection, LCBF became significantly decreased and remained so for 4 hours. However, within 24 hours, LCBF had returned to control levels where it remained for 3 days. Endothelial injury was observed in the basilar and middle cerebral arteries from 30 minutes through 4 hours, the same periods in which LCBF was significantly reduced. Within 24 hours, the time period in which LCBF had rebounded to control ranges, cerebral arteries showed no evidence of endothelial damage and resembled control cells. CONCLUSION: The results indicate a direct correlation between changes in LCBF and the structural integrity of endothelial cells in the early stages following SAH. The lack of chronically depressed LCBF (after 1 day) may be related to the quick structural repair of endothelium.  相似文献   

14.
15.
We investigated the role of carbon monoxide as a neural modulator of extracellular glutamate concentration in rat hippocampus CA1 in transient forebrain ischemia by using metalloporphyrins, which block the production of carbon monoxide through the inhibition of heme oxygenase (HO) activity. Infusion of 10 and 100 microM zinc protoporphyrin IX, which inhibits nitric oxide synthase activity as well as HO activity, significantly increased glutamate concentration compared with that on the vehicle-treated side. However, infusion of 100 microM tin mesoporphyrin IX, which inhibits only HO activity, did not affect glutamate concentration in ischemia. Our results therefore do not support the hypothesis that carbon monoxide acts as a neural messenger through the modulation of extracellular glutamate concentration in ischemia.  相似文献   

16.
Previous work has shown that the GABAA-receptor (GABAA-R) could be phosphorylated by cAMP-dependent protein kinase (PKA), protein kinase C (PKC), and a receptor associated kinase. However, no clear picture has yet emerged concerning the particular subunit/subtypes of the GABAA-R that were phosphorylated by PKA and PKC. In the present report we show that an antibody raised against a 23 amino acid polypeptide corresponding to a sequence in the putative intracellular loop of the beta 1 subunit of the receptor blocks the in vitro phosphorylation of the purified receptor by PKA and PKC. Moreover, N-terminal sequence analysis of the principal phosphopeptide fragment obtained after proteolysis of the receptor yielded a sequence that corresponds to the beta 3 subunit of the receptor. Such data provide additional support for our hypothesis (Browning et al., 1990, Proc. Natl. Acad. Sci. USA 87:1315-1317) that both PKA and PKC phosphorylate the beta-subunit of the GABAA-R.  相似文献   

17.
OBJECTIVE: Recent early cerebral blood flow (CBF) studies in cases of severe head injury have revealed ischemia in a substantial number of patients with a variety of computed tomographically demonstrated diagnoses. The underlying derangements causing this early ischemia are unknown, but cerebral blood volume (CBV) measurements might offer some insight into this pathological abnormality. METHODS: For this purpose, stable xenon-enhanced computed tomography was used for assessment of CBF, and a dynamic computed tomographic imaging technique was used for determining CBV. Based on the occurrence of regional ischemia (CBF < 20 ml/100 g/min), seven patients with varying anatomic lesions revealed by computed tomography were identified for comparison between CBF and CBV in ischemic and nonischemic areas. RESULTS: Both CBF (15+/-4.3 versus 34+/-11 g/min, P < 0.002) and CBV (2.5+/-1.0 versus 4.9+/-1.9 ml/100 g) exhibited significantly lower values in the ischemic zones than in the nonischemic zones (means+/-standard deviations). Among 26 patients with or without ischemia observed during their initial follow-up studies, which were conducted between Days 2 and 8, all patients showed CBF and CBV values within the low-normal range. CONCLUSION: These data evidently support the suggestion that compromise of the microvasculature is the cause of early ischemia, rather than vasospasm of the larger conductance vessels.  相似文献   

18.
Large scale use of lysozyme for periplasmic release has been impeded by the cost of the pure enzyme and its subsequent presence as a contaminant in later downstream processing steps. In this paper, we discuss the use of lysozyme for pilot scale recovery of a periplasmic enzyme from E. coli. The effects of concentration of sucrose, lysozyme and cells on periplasmic enzyme release were examined. Lysozyme concentration can be reduced 5-fold from previous reports and a reduction in sucrose concentration from 20 to 15% (w/v) allows an improvement in centrifugal harvesting by reducing viscosity. High levels of release were still achieved using this technique and further improvements in yield were obtained by optimising other components of the releasing mixture. Results show that some release is still achieved in circumstances where no lysozyme use is possible. Results also indicate that a substantial proportion (up to 70%) of lysozyme remains bound to the cellular debris after its action and is removed with this material.  相似文献   

19.
Aldose reductase and aldehyde reductase were purified to homogeneity from multiple samples of human kidney cortex and medulla. A single form of aldose reductase is expressed in kidney that is kinetically and immunochemically indistinguishable from aldose reductase expressed in other human tissues. The results support the conclusion that there is a single human aldose reductase, and that aldose reductase is expressed in a reduced form, characterized by high sensitivity to aldose reductase inhibitors and ability to catalyze the reduction of glucose. Aldose reductase is easily oxidized to a form that is insensitive to aldose reductase inhibitors and unable to catalyze the reduction of glucose. This form does not appear to exist in vivo, even in kidney from diabetics. There is wide variation in the level of expression of aldose reductase in kidney, especially in cortex. The immunochemically separate but similar aldehyde reductase is also expressed in kidney as a single enzyme indistinguishable from aldehyde reductase from other human tissues. Aldehyde reductase levels exceed those of aldose reductase, both in cortex and medulla.  相似文献   

20.
Previous research has demonstrated that chronic intake of nutritive sweet solutions, but not nonnutritive sweet solutions, enhances morphine's analgesic potency. To separate out the effects of sweet taste from other changes in dietary intake, which result when rats consume a sucrose solution, the effects of altering dietary levels of protein, or vitamins and minerals on morphine-induced analgesia were examined. In Experiment 1, 40 male Long-Evans rats were fed standard chow or a semipurified diet containing either 10, 20, or 40% protein. Three weeks later, antinociceptive responses to morphine were examined using the tail flick procedure. Tail flick latencies were measured immediately prior to and 30, 60, and 90 min after the administration of morphine sulfate (0.0, 1.25, 2.5, and 5.0 mg/kg, SC). At all three measurement times, antinociceptive responses increased directly as a function of the dose of morphine, but did not differ as a function of diet. In Experiment 2, 24 rats were maintained on either standard laboratory chow or semipurified diets containing 20% protein and either 100% or 25% of the recommended levels of vitamins and minerals for 3 weeks. Tail flick latencies were measured immediately prior to and 30 min after injections (SC) of 2.5 mg/kg morphine sulfate. This procedure was repeated until a cumulative dose of 10.0 mg/kg was obtained. Tail flick latencies increased significantly as a function of drug dose, but did not differ across dietary conditions. These results demonstrate that the increase in morphine-induced analgesia seen in rats consuming a sucrose solution is not due to alterations in either protein or micronutrient intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号