首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Qin-Hui Zhang  Yan Li  Bo-Qing Xu   《Catalysis Today》2004,98(4):5941-605
Nanocomposite Ni/ZrO2-AN catalyst consisting of comparably sized Ni metal and ZrO2 nanoparticles is studied in comparison with zirconia- and alumina-supported Ni catalysts (Ni/ZrO2-CP and commercial Ni/Al2O3-C) for steam reforming of methane (SRM) and for combined steam and CO2 reforming of methane (CSCRM). The reactions are performed under atmospheric pressure with stoichiometric amounts of H2O and CH4 or (H2O + CO2) and CH4 at 1073 K. Under a wide range of methane space velocity (gas hourly space velocity of methane GHSVCH4 = 12,000–96,000 ml/(h gcat.), the nanocomposite Ni/ZrO2-AN catalyst always shows higher activity and stability for both SRM and CSCRM reactions. The two supported Ni catalysts (Ni/ZrO2-CP and Ni/Al2O3-C) exhibit fairly stable catalysis under low GHSVCH4 but they are easily deactivated under high GHSVCH4 and become completely inactive when they are reacted for ca.100 h at GHSVCH4 = 48,000 ml/(h gcat.). The CSCRM reaction is carried out with different H2O/CO2 ratios in the reaction feed while keeping the molar ratio (H2O + CO2)/CH4 = 1.0, the results prove that the nanocomposite Ni/ZrO2-AN catalyst can be highly promising in enabling a catalytic technology for the production of syngas with flexible H2/CO ratios (ca. H2/CO = 1.0–3.0) to meet the requirements of various downstream chemical syntheses.  相似文献   

2.
The study of permeable composite monolith (PCM) membranes for the Fischer–Tropsch synthesis is continued. On the scale of membranes with outer diameter of 42 mm, it is proved that PCM can combine high productivity of hydrocarbons (>55 kgC5+ ( h)−1 at 0.6 MPa, 484 K), high selectivity towards heavy hydrocarbons (ASF > 0.85, C5+ upto 0.9) as well as high heat-conductivity and high mechanical strength.  相似文献   

3.
Three zirconia-supported platinum group metal (Pt, Ru and Pt–Ru) catalysts were prepared by impregnation. The activity of these catalysts toward the oxidative steam reforming of ethanol (OSRE) was examined in a fixed-bed reactor in the temperature range of 260–380 °C. The catalysts were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), transmission electron microscopy (TEM) and nitrogen adsorption at −196 °C. Activity results indicated that the optimized experimental conditions involved a reforming temperature of close to 300 °C and the molar ratios of O2/EtOH and H2O/EtOH of 0.44 and 4.9, respectively. An ethanol conversion (CEtOH) approaching 100% and a hydrogen yield (YH2) exceeding 3.0 mole/mole ethanol were noticed at 280 °C over all the catalysts. Among these catalysts, the Pt–Ru/ZrO2 catalyst was an excellent OSRE catalyst at low temperature. The maximum YH2 was 4.4 and the CO distribution was 3.3 mol% at 340 °C.  相似文献   

4.
We present Monte Carlo simulations using an equilibrium lattice-gas model for the electrosorption of Cl on Ag(1 0 0) single-crystal surfaces. Fitting the simulated isotherms to chronocoulometry experiments, we extract parameters such as the electrosorption valency γ and the next-nearest-neighbor lateral interaction energy ϕnnn. Both coverage-dependent and coverage-independent γ were previously studied, assuming a constant ϕnnn [I. Abou Hamad, Th. Wandlowski, G. Brown, P.A. Rikvold, J. Electroanal. Chem. 554–555 (2003) 211]. Here, a self-consistent, entirely electrostatic picture of the lateral interactions with a coverage-dependent ϕnnn is developed, and a relationship between ϕnnn and γ is investigated for Cl on Ag(1 0 0).  相似文献   

5.
A heterogeneous sono-catalytic system with addition of hydrogen peroxide (USH2O2+Cat.) was employed for the degradation of 200 ppm of p-chlorophenol (4-CP) at 25 °C and 100 W of ultrasound power. One thousand and six hundred parts per million of initial hydrogen peroxide (H2O2) concentration and 1 g/L of catalyst loading over three heterogeneous copper catalysts, CuO, Cu/Al2O3 (Cu/Al) and CuO·ZnO/Al2O3 (Cu/Zn) was used. The benefits of ultrasound in a heterogeneous catalytic system were evaluated. A considerable synergistic effect of the USH2O2+Cat. system was only achieved with supported catalysts (Cu/Al and Cu/Zn) possibly due to good dispersion of catalysts as a result of catalyst size reduction during ultrasound irradiation. Moreover, between the two supported copper catalysts, the Cu/Al provided promising catalytic performance by giving higher 4-CP and TOC removal accompanied with efficient H2O2 consumption. Experiments with a homogeneous copper catalyst revealed that use of ultrasound in a homogeneous system shows an adverse effect on decomposition of 4-CP.  相似文献   

6.
A flame electrospray pyrolysis is presented for synthesizing CeO2 nanoparticles with a dense morphology, high crystallinity and nanometer size. Hydrated cerium nitrate precursor dissolved in an ethanol/diethylene glycol butyl ether mixture was injected into a CH4/air premixed flame using an electrospray method. The number size distributions of the as-prepared particles were trimodal. It is suggested that the particles for the fine mode were formed by a Rayleigh disintegration of the charged precursor droplets during the droplet evaporation. The particles for the coarse and middle modes are surmised to come from primary and secondary droplets, respectively, which were formed simultaneously during the atomization processes. The CeO2 nanoparticles for the coarse mode were nonspherical and composed of few crystallites. The nanoparticles for the fine and middle modes were nearly spherical and nonagglomerated. The as-prepared CeO2 nanoparticles showed highly crystallinity.  相似文献   

7.
A method for the sulfonation of PEEK-WC, a glassy poly(ether ether ketone) with sulphuric acid is presented. Depending on the reaction time, polymers with ion exchange capacity (IEC) from 0.30 to 0.76 meqH+/g are obtained, as determined by titration with NaOH solutions. The thermal properties of the polymers were studied by differential scanning calorimetry, showing that the glass transition temperature increases with increasing degree of sulfonation, from 224 °C for pure PEEK-WC to 246 °C for the polymer having an IEC of 0.76 meqH+/g. The sulfonated polymers were used to prepare proton exchange membranes for possible application in fuel cells. Dense membranes were prepared by solvent evaporation, using DMA as the solvent. The transport properties of the membranes were determined in terms of water uptake and permeability for hydrogen and oxygen. Electrochemical characterization was performed by measuring cell voltage and power density curves as a function of current density at different working temperatures and the results were compared with those of a commercial Nafion membrane. A power density of 284 mW/cm2 was obtained for S-PEEK-WC membrane at 120 °C in H2/air fuel cell, slightly above the corresponding value found for Nafion.  相似文献   

8.
A new microcalorimeter with eight parallel channels using robust, low cost sensors for characterization of coatings and adhesives is described and first experiments on coatings and adhesives are presented. The calorimetric sensors are based on thin glass plates (20 mm × 20 mm, thickness 150 μm) with heater and thermocouple sputtered on the surfaces (calorimetric active area of about 9 mm2). The setup allows heating and cooling experiments as well as isothermal measurements in the temperature-modulated mode with up to eight sensors in parallel. The measured quantities are the real (Cp) and imaginary part (Cp) of the complex heat capacity (), the related absolute value of the heat capacity () and the heat flow . An industrial computer (NI PXI system) with specific software for calibration and data recording controls the electronic components. Sensors can be embedded in a temperature controlled oven (heating and cooling by Peltier elements) or alternatively in a climatic cabinet with controlled temperature and humidity.

The method has been applied successfully to monitoring of film formation of aqueous polymer dispersions (styrene-acrylate copolymer) and curing of coatings.  相似文献   


9.
The single gas H2 and N2 permeability of a 4 μm thick dense fcc-Pd66Cu34 layer has been studied between room temperature and 510 °C and at pressure differences up to 400 kPa. Above 50 °C the H2 flux exhibits an Arrhenius-type temperature dependence with JH2=(5.2±0.3) mol m−2 s−1 exp[(−21.3 ± 0.2) kJ mol−1/(R·T)]. The hydrogen transport rate is controlled by the bulk diffusion although the pressure dependence of the H2 flux deviates slightly from Sieverts’ law. A sudden increase of the H2 flux below 50 °C is attributed to embrittlement.  相似文献   

10.
The kinetics of iodine oxide aerosol production and growth was studied in an aerosol flow reactor by the photolysis of I2 in an excess of O3, at a temperature of 295 K and a total pressure of 1 atm. The time-resolved evolution of the particle size distribution was fitted using a model which assumes that the initial period of particle growth (in the free molecular flow regime) is dominated by collision-coalescence, maintaining spherical shape and compact structure. This leads to the formation of primary particles of about 3 nm radius, which trigger fractal (agglomerative) growth in the transition regime resulting in particle aggregates characterised by lower mass fractal dimensions (Df) in the range 2.2–2.5. Enhancement of the particle pair collision kernels due to competing van der Waals and hydrodynamic forces is treated within the model. The densities of the fractal aggregates are lower than that of the bulk material, recently identified as I2O5 [Saunders, R. W., & Plane, J. M. C. (2005). Formation pathways and composition of iodine oxide ultrafine particles. Environmental Chemistry, 2, 299], as a result of internal void space within the aggregate structures.  相似文献   

11.
Bacterial strain of Rhodococcus sp. (JUBT1) isolated from petrol/diesel station has been used for the desulfurization of different model organo-sulfur compounds like DBT, substituted DBT, etc. which are difficult to remove in the conventional hydro-desulfurization of diesel fraction. The initial concentration of organo-sulfur compounds has been varied in the range of 100–1000 mg/dm3. Under the present experimental range, the bacterial growth has been observed to follow Haldane-type kinetics characterizing the presence of substrate inhibition. The extent of inhibition by the substrate has been observed to increase with the number of substituents in the same range of initial concentration of different organo-sulfur compounds. The values of intrinsic kinetic parameters, like maximum desulfurization rate, vmax, half saturation constant, KS, inhibition constant, KSi and the maximum substrate concentration, CSmax, corresponding to the maximum uninhibited rate of desulfurization, have been determined using each organo-sulfur compound having different number of substituents as limiting substrate. Relative changes in the values of the kinetic parameters have been correlated to the number of substitutions. Separate studies have also been conducted to determine the kinetics of bio-desulfurization of a hydro-treated diesel fraction. The concentration of sulfur in diesel was selected in the range of 100–500 mg/dm3.

The effect of aqueous to non-aqueous ratio on the rate of specific desulfurization of hydro-treated diesel fraction in the range from 1:9 to 9:1 has also been studied in the present investigation. Mathematical models have been developed to predict the conversion of sulfur during batch-type bio-desulfurization of model compounds as well as diesel having known distribution of organo-sulfur compounds. The predictions of the model satisfactorily compare with the experimental results.  相似文献   


12.
The spin state of iron ions in Fe-ZSM-5 zeolites can be purposefully varied by adsorption of gaseous probe molecules. The resulting Fe complexes with half-integer spin (, and ) can be reliably identified by electron paramagnetic resonance (EPR). A good correlation has been found between the concentration of surface sites active in low-temperature nitrous oxide decomposition and the concentration of low-spin () nitrosyl complexes of Fe formed after adsorption of NO molecules. Based on the analysis of the formation of such complexes under varying conditions, we conclude that these active sites contain a binuclear iron complex with S = 0 and three adsorbed NO molecules. An approach to investigate various Fe-containing sites in oxidation catalysts is discussed.  相似文献   

13.
All aerosol formation and evolution processes, such as nucleation, condensation, fragmentation, etc., are understood and rationalized via fundamental probabilistic concepts such as probabilities of collision, coagulation, dispersion, etc. Therefore all theoretical size distribution functions (lognormal, modified gamma distribution, self-preserving particle size distribution for Brownian coagulation, etc.) are in fact size probability density functions pdf(r). Any (e.g., measured) size distribution f(r) of an aerosol system is some random realization of its pertinent size probability density function pdf(r). When pdf(r) is viewed as a continuous function, the corresponding size distribution vanishes almost everywhere excluding some randomly set of sizes where f(r)=1. We investigate proximity between f(r) and pdf(r) in finite size intervals and derive expressions for estimation of the standard deviations of several aerosol size-dependent properties arising from randomness of f(r).  相似文献   

14.
The electrical conductivity at intermediate temperature of 150–250 °C and the activation energy for conductivity of composite proton conductors, 2NH4PO3–(NH4)2Mn(PO3)4 and 2NH4PO3–(NH4)2SiP4O13, were investigated as a function of water vapor pressure, PH2O. The activation energy decreased linearly with the natural logarithm of PH2O, indicating that water is chemically adsorbed to the electrolytes. The decrease in activation energy is possibly caused by formation of hydrogen bonds between the adsorbed water and the electrolytes. In addition, the pre-exponential factor of Arrhenius equation, σ0, increased with PH2O. This suggests that the adsorbed water may generate additional mobile protons for the composite electrolyte. Therefore, the enhancement in the electrical conductivity of a NH4PO3-based electrolyte in a water-vapor rich atmosphere originates possibly from the decrease in activation energy as well as the increase in mobile proton concentration.  相似文献   

15.
Cobalt catalysts as used in the Fischer-Tropsch synthesis (FTS) are relatively expensive (as compared to iron) and need to have a high metal dispersion and long life to be able to offer a good balance between cost and performance. The oxidation of nano-sized metallic cobalt to cobalt oxide during Fischer-Tropsch synthesis has long been postulated as a major deactivation mechanism. However, to date there is no consistent picture. This paper presents an extensive overview of the literature on this topic of deactivation by means of oxidation for unsupported as well as silica-, alumina- and titania-supported cobalt catalysts. Furthermore, it presents results on the deactivation of an industrial Co/Al2O3 catalyst as obtained by pseudo in situ X-ray diffraction, magnetic measurements and X-ray absorption near-edge spectroscopy. These analyses were performed to study the oxidation state of spent industrial Co/Al2O3 catalyst samples withdrawn from a slurry reactor operating under realistic FTS conditions, and it was concluded that oxidation can be ruled out as a major deactivation mechanism. Finally, these data together with all relevant literature were used to create a common view on the oxidation behaviour of metallic cobalt during FTS. The apparent discrepancies in literature on the oxidation behaviour of cobalt are most likely due to the lack of direct characterisation of the cobalt oxidation state and due to the comparison of catalysts with varying cobalt crystallites sizes, compared at different reactor partial pressures of hydrogen and water (PH2O/PH2). It was shown that the oxidation of cobalt can be prevented by selecting the correct combination of the reactor partial pressures of hydrogen and water (PH2O/PH2) and the cobalt crystallite size.  相似文献   

16.
Uncertainties in modeling heat conduction in connection with the application of laser-induced incandescence (LII) to primary particle sizing are discussed. Comparing two models widely used in this context, namely those of Fuchs [(1963). On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere. Pure and Applied Geophysics 56, 185–193] and McCoy/Cha [(1974). Transport phenomena in the rarefied gas transition regime. Chemical Engineering Science 29, 381–388], it is demonstrated that arising differences may be accounted for by the choice of a proper “effective” thermal accommodation coefficient eff. In experiments on a large number of carbon blacks an overally good agreement between LII results and specified values for particle sizes based on electron-microscopy (EM) is obtained with a choice of eff=0.25 (based on the McCoy/Cha-model). As aggregate size is expected to influence heat transfer from primary particles, the experimental data are analyzed by a model for an effective heat transfer surface of fractal aggregates. Based on values for the average number of primary particles per aggregate as derived from photocentrifuge measurements the data yield an extrapolated value for the physical accommodation coefficient for isolated particles of 1=0.43.  相似文献   

17.
The characteristics of polyamide membranes with respect to interfacial polymerization of diamine mixtures with trimesoyl chloride (TMC) are studied using two-parameter model of Extended Nernst–Planck Equation. The investigation provided the information about the effect of TMC content and reaction time on the diffusive and convective flow of ions through the membrane. These indirectly reflected structural properties such as effective skin thickness, pore size and structural integrity of membrane. Membrane flux and rejection are related to the TMC content and reaction time, when NaCl and CuSO4 are used as testing solutes. The diffusive transport, and convective transport, JvC1,0(1−R1) contributions are successfully determined by fitting the model to the experimental data to get f1 and R1 parameters. It was found that at high TMC content the contribution of convective transport over diffusion transport is increased due to the increase of effective thickness. However, for smaller size and higher diffusive solute like Na+, the ratio of diffusive flow over convective flow is increased at high TMC and high reaction time. This indicated that numbers of tightened pores membrane are increased. An optimum membrane with high flux and high copper ion rejection could be obtained by incorporating 0.1% (w/v) of TMC in the polymerization reaction mixture under reaction time period of 5 s.  相似文献   

18.
The water gas shift (WGS) reaction was studied in a double-chamber high temperature proton conducting cell (HTPC). The proton conductor was a strontia–ceria–ytterbia (SCY) disk of the form: SrCe0.95Yb0.05O3− and the working electrode was a polycrystalline Fe film. The reaction temperature and the inlet partial pressure of CO varied between 823 and 973 K, and between 1.0 and 10.6 kPa, respectively. The inlet partial pressure of steam (PH2O) was kept constant at 2.3 kPa. An increase in the production of H2 was observed upon “pumping” protons away from the catalyst surface. The Faradaic efficiency (Λ) was lower than unity, indicating a sub-Faradaic effect. The highest value of rate enhancement ratio (ρ) was approximately 3.2, at T = 823 K. The proton transport number (PTN) varied between 0.45 and 1.0. An up to 99% of the produced H2 was electrochemically separated from the reaction mixture.  相似文献   

19.
This paper explored a novel advanced oxidation process (AOP) for wastewater treatment—wet electrocatalytic oxidation (WEO), which introduced a small current into wet air oxidation (WAO) to promote the formation of hydroxyl radical and accelerate the oxidation of organic pollutants. The results showed that this novel process could couple the advantages of both WAO and electrochemical oxidation (EO). The effects of major operational factors of WEO were studied at relatively moderate condition (T = 100–160 °C, C = 1000 mg L−1, PO2 = 4 TOD, PN2 = 0.50 MPa, current density = 0–7.08 mA cm−2 and pH 2.7–10.6) aiming to p-nitrophenol (PNP) degradation, TOC and COD removal. The cost-effective operational parameters were found and the current efficiencies were highly beyond 100% with the maximum value of 386%. The degradation mechanism of WEO was carefully studied based on the formation of free radical. After the detail analysis of Hammett theory and quantitative structure-activity relationships (QSAR), the reaction pathway of hydroxyl radical with PNP was analyzed with the help of Gaussian 03W and the probable degradation pathway of PNP by WEO was deduced.  相似文献   

20.
HAADF-STEM studies have provided detailed morphological insight regarding MoS2, WS2, Co–Mo–S, Ni–Mo–S and Ni–W–S nanostructures in graphite-supported catalysts. It is found that the technique allows the catalytically active edges to be imaged even for single layer metal sulfide structures. Unpromoted MoS2 and WS2 are predominantly present as slightly truncated triangular clusters containing only a single S–M–S layer (M = Mo, W). The addition of promoter atoms results in more heavy truncations consistent with the expected tendency for the Co–Mo–S structures to expose promoted S-type edges at the expense of unpromoted Mo-type edges. However, the HAADF-STEM (High-Angle Annular Dark-field Scanning Transmission Electron Microscopy) results show for the first time that Co–Mo–S and Ni–W–S may also expose extended high index truncations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号