首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amorphous InGaZnO (a-IGZO) thin film transistors (TFTs) with double-layer gate dielectric were fabricated at low temperature and characterized. A stacked 150 nm-thick SiO2/50 nm-thick HfO2 dielectric layer was employed to improve the capacitance and leakage characteristics of the gate oxide. The SiO2/HfO2 showed a higher capacitance of 35 nF/cm2 and a lower leakage current density of 4.6 nA/cm2 than 200 nm-thick SiO2. The obtained saturation mobility (μsat), threshold voltage (Vth), and subthreshold swing (S) of the fabricated TFTs were 18.8 cm2 V?1 s?1, 0.88 V, and 0.48 V/decade, respectively. Furthermore, it was found that oxygen pressure during the IGZO channel layer deposition had a great influence on the performance of the TFTs.  相似文献   

2.
Transparent conductive oxide tungsten-doped tin oxide thin films were deposited on glass substrates from ceramic targets by the pulsed plasma deposition method. The structural, electrical and optical properties have been investigated as functions of tungsten doping content and oxygen partial pressure. The lowest resistivity of 2.1 × 10? 3 Ω?cm was reproducibly obtained, with carrier mobility of 30 cm2V? 1s? 1 and carrier concentration of 9.6 × 1019 cm? 3 at the oxygen partial pressure of 1.8 Pa. The average optical transmission was in excess of 80% in the visible region from 400 to 700 nm, with the optical band gap ranging from 3.91 to 4.02 eV.  相似文献   

3.
We demonstrate hybrid tandem photovoltaic devices with a transparent conductive interconnecting recombination layer. The series-connected hybrid tandem photovoltaic devices were developed by combining hydrogenated amorphous silicon (a-Si:H) and polymer-based organic photovoltaics (OPVs). In order to enhance the interfacial connection between the subcells, we employed highly transparent and conductive indium tin oxide (ITO) thin layer. By using the ITO interconnecting layer, the power conversion efficiency of the hybrid tandem solar cell was enhanced from 1.0% (VOC = 1.041 V, JSC = 2.97 mA/cm2, FF = 32.3%) to 2.6% (VOC = 1.336 V, JSC = 4.65 mA/cm2, FF = 41.98%) due to the eliminated interfacial series resistance.  相似文献   

4.
We have investigated the effect of the deposition of an HfO2 thin film as a gate insulator with different O2/(Ar + O2) gas ratios using RF magnetron sputtering. The HfO2 thin film affected the device performance of amorphous indium–gallium–zinc oxide transistors. The performance of the fabricated transistors improved monotonously with increasing O2/(Ar + O2) gas ratio: at a ratio of 0.35, the field effect mobility of the amorphous InGaZnO thin film transistors was improved to 7.54 cm2/(V s). Compared to those prepared with an O2/(Ar + O2) gas ratio of 0.05, the field effect mobility of the amorphous InGaZnO thin film transistors was increased to 1.64 cm2/(V s) at a ratio of 0.35. This enhancement in the field effect mobility was attributed to the reduction of the root mean square roughness of the gate insulator layer, which might result from the trap states and surface scattering of the gate insulator layer at the lower O2/(Ar + O2) gas ratio.  相似文献   

5.
《Optical Materials》2003,21(1-3):439-443
Organic thin-film field-effect transistors using organic semiconductor, perylene are fabricated, and electrical measurements are performed. The field-effect mobility of the device using perylene shows only p-type behavior while the electron and hole mobilities of its single crystal form are 5.5 and 0.5 cm2/V s, respectively. Stacked layers of perlyene (a layer fabricated with low deposition rate followed by another layer with high deposition rate) are formed for the active layer. Furthermore, hexadecafluorocopperphthalocyanine (F16CuPc) and pentacene buffer layers are also used to modify the interface. For all of these devices, perylene layers acts as p-type. Electron trapping at grain boundaries and interface is thought to be a crucial factor. Hole mobility of 3.9×10−4 cm2/V s is obtained for the perylene film field-effect transistor device.  相似文献   

6.
A novel low-temperature (600–850 °C), chemical vapor deposition method, involving a simple reaction between disiloxane (H3Si–O–SiH3) and ammonia (NH3), is described to deposit stoichiometric, Si2N2O, and non-stoichiometric, SiOxNy, silicon oxynitride films (5–500 nm) on Si substrates. Note, the gaseous reactants are free from carbon and other undesirable contaminants. The deposition of Si2N2O on Si (with (1 0 0) orientation and a native oxide layer of 1 nm) was conducted at a pressure of 2 Torr and at extremely high rates of 20–30 nm min−1 with complete hydrogen elimination. The deposition rate of SiOxNy on highly-doped Si (with (1 1 1) orientation but without native oxide) at 10−6 Torr was ∼1.5 nm min−1, and achieved via the reaction of disiloxane with N atoms, generated by an RF source in an MBE chamber. The phase, composition and structure of the oxynitride films were characterized by a variety of analytical techniques. The hardness of Si2N2O, and the capacitance–voltage (CV) as a function of frequency and leakage current density–voltage (JLV) characteristics were determined on MOS (Al/Si2N2O/SiO/p-Si) structures. The hardness, frequency-dispersionless dielectric permittivity (K), and JL at 6 V for a 20 nm Si2N2O film were determined to be 18 GPa, 6 and 0.05–0.1 nA cm−2, respectively.  相似文献   

7.
Bio-nanocomposite films based on chitosan and manganese oxide nanoflake have been fabricated via the layer-by-layer (LBL) self-assembly technique. UV–vis absorption spectra showed that the subsequent growth of the nanocomposite film was regular and highly reproducible from layer to layer. X-ray photoelectron spectroscopy (XPS) spectra confirmed the incorporation of chitosan and manganese oxide nanoflake into the films. Scanning electron microscopy (SEM) images revealed that the nanocomposite film had a continuous surface and a layered structure. A sensitive hydrogen peroxide (H2O2) amperometric sensor was fabricated with the chitosan–manganese oxide nanoflake nanocompoite film. The sensor showed a rapid and linear response to H2O2 over the range from 2.5 × 10? 6 to 1.05 × 10? 3 M, with a sensitivity of 0.038 A M? 1 cm? 2.  相似文献   

8.
《Materials Letters》2007,61(4-5):937-941
The (Pb, La)TiO3 (PLT) ferroelectric thin films with and without a special buffer layer of PbOx have been deposited on Pt/Ti/SiO2/Si(100) substrates by RF magnetron sputtering technique at room temperature. The microstructure and the surface morphology of the films annealed at 600 °C for 1 h have been investigated by X-ray diffraction (XRD) and atomic force microscope (AFM). The surface roughness of the PLT thin film with a special buffer layer was 4.45 nm (5 μm × 5 μm) in comparison to that of 31.6 nm (5 μm × 5 μm) of the PLT thin film without a special buffer layer. Ferroelectric properties such as polarization hysteresis loop (PV loop) and capacitance–voltage curve (CV curve) of the films were investigated. The remanent polarization (Pr) and the coercive field (Ec) are 21 μC/cm2 and 130 kV/cm respectively, and the pyroelectric coefficient is 2.75 × 10 8 C/cm2 K for the PLT film with a special buffer layer. The results indicate that the (Pb, La)TiO3 ferroelectric thin films with excellent ferroelectric properties can be deposited by RF magnetron sputtering with a special buffer layer.  相似文献   

9.
Inverted polymer solar cells (IPSCs) were fabricated with cesium carbonate (Cs2CO3) modified indium tin oxide (ITO) substrates as the electrode and molybdenum trioxide (MoO3) modified Al as the anode. The Cs2CO3 dissolved in 2-ethoxyethanol was spin-coated on ITO substrates, showing snowflake-like morphology characterized by the scanning electron microscope (SEM). The absorption, X-ray diffraction as well as the morphology of the active layer were measured before and after annealing treatment. The IPSCs with annealing treatments on the active layers and MoO3 layers exhibited the maximum power conversion efficiency (PCE) approaching to 2%, with open circuit voltage (Voc) of 0.57 V, short circuit current density (Jsc) of 8.8 mA/cm2 and fill factor (FF) of 38.7%. The performance of IPSCs was dramatically decreased by annealing treatment after the deposition of Al cathode, which may be due to the diffusion of Al atom crossing the MoO3 layer forming new channels for charge carrier collection. However, the new channels are not beneficial to the charge carrier collection, which is demonstrated from that the Jsc of IPSCs was evidently decreased from 8.8 to 4.6 mA/cm2 by annealing treatment after deposition Al layer. The annealing treatment after deposition of MoO3 could improve the interfacial contact to aid in electron extraction.  相似文献   

10.
The properties of the window layer and transparent conducting oxide (TCO)/p interface in silicon based thin-film solar cells are important factors in determining the cell efficiency. As the potential barrier got larger at the interface, the transmission of photo-generated holes were impeded and the recombination of photo-generated electrons diffusing back toward the TCO interface were enhanced leading to a deterioration of the fill factor. In this paper different p-layers were studied. It was found that using p-type hydrogenated amorphous silicon oxide (a-SiOx:H) layer as the window layer along with a 5 nm buffer layer which reduced the barrier at the fluorine doped tin oxide (SnO2:F) TCO/p-layer interface, improved the cell efficiency. a-SiOx:H was used as the buffer layer. With the buffer layer between TCO and p-type a-SiOx:H, the potential barrier dropped from 0.506 eV to 0.472 eV. This lowered barrier results in increased short circuit current density (Jsc) and fill factor (FF). With the buffer layer, Jsc increased from 11.9 mA/cm2 to 13.35 mA/cm2 and FF increased from 73.22% to 74.91%.  相似文献   

11.
《Materials Letters》2006,60(13-14):1559-1564
Lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (PZT) thin films were grown on Si (100) and Pt(111)/Ti/SiO2/Si(100) substrates by a new reverse dip-coating method of sol–gel process. The method was first proposed and applied to coat films. It has several advantages over the conventional sol–gel coating method, including: no consideration of the mechanical transmission that is difficult to manipulate with costly exact apparatus in classical dip-coating procession, convenient processing control, simplicity, low cost, less pollution, and easy fabrication films on large areas and irregular shaped devices etc. This paper studied the factors including PbO content of precursor, TiO2 and ZrO2 layers, which are related to raw materials of PZT precursor and influence greatly the crystal orientation of the final thin films. We find that the PZT films deposited by precursor with 20% mole excess Pb displayed strong (111) preferred orientation, with 5% mole excess Pb showed a little (100) orientation and pyrochlore phase. The precursor with 10% mole excess Pb was found prompting the PZT films phase transformation with (110) preferred orientation. In addition, the results show that the TiO2 and ZrO2 seeding layers had totally different effects on the preferred orientation of PZT films. The films with TiO2 seeding layer were highly (111) oriented and exhibited better ferroelectric properties (remnant polarization Pr = 14.2 μC cm 2, coercive field Ec = 59.1 Kv cm 1) than those of the films with ZrO2 seeding layer shown (100) orientation (Pr = 7.4 μC cm 2, Ec = 42.9 Kv cm 1).  相似文献   

12.
We compared the characteristics of single Ga:ZnO (GZO) and GZO/Ag/GZO multilayer electrodes for source/drain (S/D) contacts in amorphous In–Ga–Zn–O (a-IGZO)-based thin film transistors (TFTs). Due to the existence of a Ag metallic layer between the GZO layers, the GZO/Ag/GZO multilayer electrode exhibited low sheet resistance (3.95 ohm/sq.) and resistivity (3.32 × 10?5 ohm-cm). The saturation mobility (10.2 cm2 V?1 s?1) of the a-IGZO TFT with GZO/Ag/GZO S/D electrodes is much higher than that attained for the a-IGZO TFT with single GZO S/D electrodes (0.7 cm2 V?1 s?1) due to the lower resistivity of the GZO/Ag/GZO multilayer S/D electrode. Furthermore, it is expected that the high transparency of the GZO/Ag/GZO multilayer will allow for the possible realization of fully transparent a-IGZO TFTs.  相似文献   

13.
Intrinsic amorphous silicon germanium (i-a-SiGe:H) films with V, U and VU shape band gap profiles for amorphous silicon germanium (a-SiGe:H) heterojunction solar cells were fabricated. The band gap profiles of i-a-SiGe:H were prepared by varying the GeH4 and H2 flow rates during the deposition process. The use of i-a-SiGe:H with band gap profile in an absorber layer for a-SiGe:H heterojunction solar cells was investigated. The solar cell using a VU shape band gap profile shows a higher efficiency compared to other shapes. The highest efficiency obtained for an a-SiGe:H heterojunction solar cell using the VU shape band gap profile technique was 9.4% (Voc = 0.79 V, Jsc = 19.0 mA/cm2 and FF = 0.63).  相似文献   

14.
《Materials Letters》2006,60(25-26):3096-3099
P-type transparent conducting tin–indium oxide (TIO) films were successfully fabricated on quartz substrates by thermal oxidation of InSn alloy (In / Sn = 0.2) films that were deposited by magnetron sputtering at room temperature (R.T.). Structural and electrical properties of TIO films were investigated. X-ray diffraction studies showed that all TIO films were polycrystalline with an orthorhombic structure. The surface morphology of TIO films viewed by field emission scanning electron microscope (SEM) revealed that the films are composed of uniformly distributed submicron grains. Hall effect measurement results indicated that hole concentration as high as 9.61 × 1018 cm 3 was achieved. It's found that 600 °C was the optimum thermal oxidation temperature to get p-type TIO films with highest hole concentration.  相似文献   

15.
To improve the quantum efficiency (QE) and hence the efficiency of the amorphous/crystalline silicon heterojunction solar cell, we have employed a LiF dielectric layer on the rear side. The high dipole moment of the LiF reduces the aluminum electrode's work–function and then lowers the energy barrier at back contact. This lower energy barrier height helps to enhance both the operating voltage and the QE at longer wavelength region, in turn improves the open-circuit voltage (Voc), short-circuit current density (Jsc), and then overall cell efficiency. With optimized LiF layer thickness of 20 nm, 1 cm2 heterojunction with intrinsic thin layer (HIT) solar cells were produced with industry-compatible process, yielding Voc of 690 mV, Jsc of 33.62 mA/cm2, and cell efficiencies of 17.13%. Therefore LiF/Al electrode on rear side is proposed as an alternate back electrode for high efficiency HIT solar cells.  相似文献   

16.
《Vacuum》1998,51(4):751-755
Very High Frequency (VHF) plasma enhanced chemical vapour deposition (PECVD) has been applied to hydrogenated amorphous silicon (a-Si:H) and hydrogenated amorphous silicon nitride (a-SiNx:H) films for thin film transistors (TFTs) fabrication. The effect of the excitation frequency on the deposition rate and the film quality of both films has been investigated. The films were prepared by VHF (30 MHz∼50 MHz) and HF (13.56 MHz) plasma enhanced CVD.High deposition rates were achieved in the low pressure region for both a-Si:H and a-SiNx:H depositions by the use of VHF plasma. The maximum deposition rates were 180 nm/min for a-Si:H at 50 MHz and 340 nm/min for a-SiNx:H at 40 MHz. For a-SiNx:H films deposited in VHF plasma, the optical bandgap, the hydrogen content and the [Si–H]/[N–H] ratio remain almost constant regardless of an increase in deposition rate. The increase of film stress could be limited to a lower value even at a high deposition rate. The TFTs fabricated with VHF PECVD a-Si:H and a-SiNx:H films showed applicable field effect mobility. It is concluded that VHF plasma is useful for high rate deposition of a-Si:H and a-SiNx:H films for TFT LCD application.  相似文献   

17.
High-quality ferroelectric thick films are required for various piezoelectric applications including high-frequency transducers and microelectromechanical systems. In this work, we report the fabrication of dense crack-free lead zirconate titanate (PZT) thick films on Pt-coated Si substrates using commercial PZT powder dispersed in a sol–gel precursor solution without viscous additives. Preannealed films were infiltrated with the same solution and heat treated at 500 °C. Dielectric and ferroelectric properties of the films are found to be strongly dependent on the number of infiltration steps reaching sufficiently high values: dielectric constant ∼2270 and remanent polarization ∼35 μC cm−2. Moderate coercive field of 60 kV cm−1 and low dielectric loss ∼0.04 are observed in these films. Effective longitudinal piezoelectric coefficient d33 also depends on the number of infiltrations demonstrating remanent value of ∼80 pm V−1 for eight infiltration steps. The results show the suitability of hybrid sol–gel method for the fabrication of PZT thick films for dielectric and piezoelectric applications.  相似文献   

18.
Ultrafine composite fibers made from poly(vinyl alcohol) (PVA)/tin glycolate — a moisture-stable tin oxide containing compound — were prepared by a combined sol–gel processing and electrospinning technique. These fibers were subsequently converted to ultrafine tin oxide fibers by calcination treatment, with the aim of producing tin oxide fiber with a high surface area-to-mass ratio and a high specific conductivity value. The acidity of spinning solution plays an important role to the morphology and size of the obtained fibers. The average diameters of the obtained composite fibers were in the range of 87–166 nm. It was found that the ultrafine tin oxide fiber showed the high conductivity value of 1.59 × 103 S cm?1 at calcinations temperature of 600 °C, and the BET surface area was in a range of 71 and 275 m2 g?1. Moreover, the effect of calcinations temperature on the phase and the size of the tin oxide fibers were investigated in this study.  相似文献   

19.
Indium and tin salt-based precursors maintaining In:Sn atomic ratio as 90:10 were utilized for the development of sol–gel dip coated indium tin oxide films (ITO) on SiO2 coated (∼ 200 nm thickness) soda lime silica glass substrate. The gel films were initially cured in air at ∼ 450 °C to obtain oxide films of physical thickness  250 nm. These were then annealed in 95% Ar–5% H2 atmosphere at ∼ 500 °C. The annealing time was varied from 0.5 h to 5 h. Variation of annealing time did not show any considerable change of transmittance in the visible region. Thermal emissivity (εd, 0.67–0.79) of the films were evaluated from their hemispherical spectral reflectance. These passed through a minima with increasing annealing time as the reflectivity of the films in the mid-IR passed through a maxima. The microstructure of the films revealed systematic growth of the ITO grains. XRD and XPS studies revealed the presence of both In and Sn metals in addition to the metal oxides. The energy dispersive X-ray (EDX) analysis showed little lowering of tin content in the films with increasing annealing time.  相似文献   

20.
《Materials Research Bulletin》2006,41(8):1461-1467
The crystal structure, surface morphology and electrical properties of layered perovskite calcium bismuth niobate thin films (CaBi2Nb2O9-CBN) deposited on platinum coated silicon substrates by the polymeric precursor method have been investigated. The films were crystallized in a domestic microwave and in a conventional furnace. X-ray diffraction and atomic force microscopy analysis confirms that the crystallinity and morphology of the films are affected by the different annealing routes. Ferroelectric properties of the films were determined with remanent polarization Pr and a drive voltage Vc of 4.2 μC/cm2 and 1.7 V for the film annealed in the conventional furnace and 1.0 μC/cm2 and 4.0 V for the film annealed in microwave furnace, respectively. A slight decay after 108 polarization cycles was observed for the films annealed in the microwave furnace indicating a reduction of the domain wall mobility after interaction of the microwave energy with the bottom electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号