首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aluminum doped ZnO thin films (ZnO:Al) deposited on flexible substrates are suitable to be used as transparent conductive oxide (TCO) thin films in solar cells because of the excellent optical and electrical properties. TPT films are a kind of composite materials and are usually used as encapsulation material of solar panels. In this paper, ZnO:Al film was firstly deposited on transparent TPT substrate by RF magnetron sputtering. The structural, optical, and electrical properties of the film were investigated by X-ray diffractometry (XRD), scanning electron microscope (SEM), UV–visible spectrophotometer, as well as Hall Effect Measurement System. Results revealed that the obtained film had a hexagonal structure and a highly preferred orientation with the c-axis perpendicular to the substrate. Also, the film showed a high optical transmittance over 80% in the visible region and a resistivity of about 3.03 × 10? 1 Ω·cm.  相似文献   

2.
Natively textured surface aluminum-doped zinc oxide (ZnO:Al) layers for thin film solar cells were directly deposited without any surface treatments via pulsed direct-current reactive magnetron sputtering on glass substrates. Such an in-situ texturing method for sputtered ZnO:Al thin films has the advantages of efficiently reducing production costs and dramatically saving time in photovoltaic industrial processing. High purity metallic Zn-Al (purity: 99.999%, Al 2.0 wt.%) target and oxygen (purity: 99.999%) were used as source materials. During the reactive sputtering process, the oxygen gas flow rate was controlled using plasma emission monitoring. The performance of the textured surface ZnO:Al transparent conductive oxides (TCOs) thin films can be modified by changing the number of deposition rounds (i.e. thin-film thicknesses). The initially milky ZnO:Al TCO thin films deposited at a substrate temperature of ~ 553 K exhibit rough crater-like surface morphology with high transparencies (T ~ 80-85% in visible range) and excellent electrical properties (ρ ~ 3.4 × 10− 4 Ω cm). Finally, the textured-surface ZnO:Al TCO thin films were preliminarily applied in pin-type silicon thin film solar cells.  相似文献   

3.
In this paper, effects of the thermal annealing on the structural, electrical, and optical properties of Al-doped ZnO (ZnO:Al) thin films prepared by reactive radio-frequency sputtering were investigated. From the X-ray diffraction observations, the orientation of ZnO:Al films was found to be a c-axis in the hexagonal structure. The optical properties of the films were investigated by optical transmittance and spectroscopic ellipsometry characterization. Based on Tauc–Lorentz model, the optical constants of ZnO:Al films were extracted in the photon energy ranging from 1.0 to 4.5 eV. Our result showed that the refractive index and extinction coefficient of the films changed consistently with annealing temperature.  相似文献   

4.
Inorganic-solid-state electrolyte tantalum oxide thin films were deposited by reactive DC magnetron sputtering to improve the leakage and deterioration of traditional liquid electrolytes in electrochromic devices. O2 at 1–20 sccm flow rates was used to deposit the tantalum oxide films with various compositions and microstructures. The results indicate that the tantalum oxide thin films were amorphous, near-stoichiometric, porous with a loose fibrous structure, and highly transparent. The maximum charge capacity was obtained at an oxygen flow rate of 3 sccm and 50 W. The transmission change of the Ta2O5 film deposited on a WO3/ITO/glass substrate between colored and bleached states at a wavelength of 550 nm was 56.7%. The all-solid-state electrochromic device was fabricated as a multilayer structure of glass/ITO/WO3/Ta2O5/NiOx/ITO/glass. The optical transmittance difference of the device increased with increasing applied voltage. The maximum change was 66.5% at an applied voltage of ± 5 V.  相似文献   

5.
《Materials Letters》2007,61(11-12):2460-2463
Ga-doped zinc oxide (ZnO:Ga) transparent conductive films with highly (002)-preferred orientation were deposited on glass substrates by DC reactive magnetron sputtering method in Ar + O2 ambience with different Ar/O2 ratios. The structural, electrical, and optical properties were investigated by X-ray diffraction, Hall measurement, and optical transmission spectroscopy. The resistivity and optical transmittance of the ZnO:Ga thin films are of the order of 10 4 Ω cm and over 85%, respectively. The lowest electrical resistivity of the film is found to be about 3.58 × 10 4 Ω cm. The influences of Ar/O2 gas ratios on the resistivity, Hall mobility, and carrier concentration were analyzed.  相似文献   

6.
Ga–Al doped ZnO/metal/Ga–Al doped ZnO multilayer films were deposited on polyethersulfone (PES) substrate at room temperature. The multilayer films consisted of intermediate Ag metal layers, top and bottom Ga–Al doped ZnO layer. The multilayer with PES substrate had advantages such as low sheet resistance, high optical transmittance in visible range and stable mechanical properties. From the results, sheet resistances of multilayer showed 9 Ω/sq with 12 nm of Ag metal layer thickness. Average optical transmittance of multilayer film showed 84% in visible range (380–770 nm) with 12 nm of Ag metal layer thickness. Moreover the multilayers showed stable mechanical properties than single-layered Ga–Al doped ZnO sample during the bending test due to the existence of ductile Ag metal layer.  相似文献   

7.
Fluorine-doped ZnO transparent conductive thin films were successfully deposited on glass substrate by radio frequency magnetron sputtering of ZnF2. The effects of rapid thermal annealing in vacuum on the optical and electrical properties of fluorine-doped ZnO thin films have been investigated. X-ray diffraction spectra indicate that no fluorine compounds, such as ZnF2, except ZnO were observed. The specimen annealed at 500 °C has the lowest resistivity of 6.65 × 10? 4 Ω cm, the highest carrier concentration of 1.95 × 1021 cm? 3, and the highest energy band gap of 3.46 eV. The average transmittance in the visible region of the F-doped ZnO thin films as-deposited and annealed is over 90%.  相似文献   

8.
《Materials Letters》2007,61(11-12):2482-2485
NiOx thin films were deposited by reactive DC-magnetron sputtering from a nickel metal target in Ar + O2 with the relative O2 content of 5%. Thermal annealing effects on optical properties and surface morphology of NiOx films were investigated by X-ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscope and optical measurement. The results showed that the changes in optical properties and surface morphology depended on the temperature. The surface morphology of the films changed obviously as the annealing temperature increased due to the reaction NiOx  NiO + O2 releasing O2. The surface morphology change was responsible for the variation of the optical properties of the films. The optical contrast between the as-deposited films and 400 °C annealed films was about 52%. In addition, the relationship of the optical energy band gap with the variation of annealing temperature was studied.  相似文献   

9.
In consequence of previous investigation of individual transparent conductive oxide (TCO) and absorber layers a study was carried out on hydrogenated amorphous silicon (a-Si:H) solar cells with diluted intrinsic a-Si:H absorber layers deposited on glass substrates covered with different TCO films. The TCO film forms the front contact of the super-strata solar cell and has to exhibit good electrical (high conductivity) and optical (high transmittance) properties. In this paper we focused our attention on the influence of using different TCO’s as a front contact in solar cells with structure as follows: Corning glass substrate/TCO (800, 950 nm)/p-type μc-Si:H (∼5 nm)/p-type a-Si:H (10 nm)/a-SiC:H buffer layer (∼5 nm)/intrinsic a-Si:H absorber layer with dilution R = [H2]/[SiH4] = 20 (300 nm)/n-type a-Si:H layer (20 nm)/Ag + Al back contact (100 + 200 nm). Diode sputtered ZnO:Ga, textured and non-textured ZnO:Al [3] and commercially fabricated ASAHI (SnO2:F) U-type TCO’s have been used. The morphology and structure of ZnO films were altered by reactive ion etching (RIE) and post-deposition annealing.It can be concluded that the single junction a-Si:H solar cells with ZnO:Al films achieved comparable parameters as those prepared with commercially fabricated ASAHI U-type TCO’s.  相似文献   

10.
Transparent conducting ZnO thin films doped with Al have been prepared by sol–gel method, which were characterized by X-ray diffraction, atomic force microscopy and ultra-violet spectrometer. The films showed a hexagonal wurtzite structure and high preferential c-axis orientation. The optical transmittance spectra of the films showed the transmittance higher than 85% within the visible wavelength region. A minimum resistivity of 6.2 × 10−4 Ω cm was obtained for the film doped with 1.5 mol.% Al, preheated at 300 °C for 15 min and post-heated at 530 °C for 1 h.  相似文献   

11.
《Materials Research Bulletin》2013,48(11):4486-4490
Highly infrared transparent conductive ruthenium doped yttrium oxide (RYO) films were deposited on zinc sulfide and glass substrates by reactive magnetron sputtering. The structural, optical, and electrical properties of the films as a function of growth temperature were studied. It is shown that the sputtered RYO thin films are amorphous and smooth surface is obtained. The infrared transmittance of the films increases with increasing the growth temperature. RYO films maintain greater than ∼65% transmittance over a wide wavelength range from 2.5 μm to 12 μm and the highest transmittance value reaches 73.3% at ∼10 μm. With increasing growth temperature, the resistivity changed in a wide range and lowest resistivity of about 3.36 × 10−3 Ω cm is obtained at room temperature. The RYO thin films with high conductivity and transparency in IR spectral range would be suitable for infrared optical and electromagnetic shielding devices.  相似文献   

12.
《Optical Materials》2005,27(3):419-423
Nanocrystalline ZnS films have been prepared by sulfidation of the reactive magnetron sputtered ZnO films. The structure, composition and optical properties of the sulfurized ZnO films as a function of the sulfidation temperature (TS) have been systematically studied. It is found that at TS  400 °C ZnO is completely converted to ZnS with the hexagonal structure. The ZnS films have a strongly (0 0 2) preferred orientation and an optical transparency of about 80% in the visible region. In addition, at TS < 444.6 °C (boiling point of sulfur), some residual sulfur decomposed from H2S gas can adhere to the sulfurized film surface while at TS = 580 °C a S/Zn ratio much higher than the ideal stoichiometric proportion of ZnS is obtained for the ZnS films. ZnS films with a minimum XRD FWHM value of 0.165° and a good S/Zn ratio of 0.99 are obtained at a temperature of 500 °C indicating the ZnS films to be suitable for use in the thin film solar cells.  相似文献   

13.
This study was to investigate anodic electrode IZTO films deposited by pulsed DC magnetron sputter at room temperature with various oxygen partial pressures onto glass substrate and to analyze the structural, electrical, and optical properties, as well as the relationship between the chemical binding state of the surface and the characteristics of IZTO films. In addition, the prepared IZTO films were used to fabricate the organic light emitting diodes (OLEDs) as an anode layer to study the device performances. The IZTO film deposited at optimal oxygen partial pressure of 2.0% in sputtering process showed the best properties, such as a low electrical resistivity and high optical transmittance of <5.1 × 10?4 Ω cm and >80% in the visible wavelength of 400–800 nm, respectively. The OLED characteristics with the optimum condition showed good brightness and the lowest turn-on voltage of >10,000 cd/m2 and 4.67 V. These results indicate that IZTO films can be a promising candidate as an alternative TCO electrode material for flexible and OLED devices.  相似文献   

14.
《Materials Letters》2006,60(13-14):1617-1621
Cuprous oxide (Cu2O) thin films were deposited by dc reactive magnetron sputtering technique onto glass substrates by sputtering of pure copper target in a mixture of argon and oxygen gases under various oxygen partial pressures in the range 8 × 10 3–1 × 10 1 Pa at a constant substrate temperature of 473 K and a sputtering pressure of 4 Pa. The dependence of cathode potential on the oxygen partial pressure was explained in terms of cathode poisoning effect. The influence of oxygen partial pressure on the structural and optical properties of Cu2O films was systematically studied. Single phase films of Cu2O were obtained at an oxygen partial pressure of 2 × 10 2 Pa. The films formed at an oxygen partial pressure of 2 × 10 2 Pa were polycrystalline with cubic structure and exhibited an optical band gap of 2.04 eV.  相似文献   

15.
《Vacuum》1999,52(1-2):115-120
Films prepared by reactive magnetron sputtering always present some structural and morphological heterogeneities.In this work, optical parameters, n(λ), k(λ) and E0, of TiO2 thin films were obtained, using only optical transmittance measurements. Films were described according to Abèles's model. Using a mono-oscillator type dispersion curve for the refractive index and a Lorentzian type curve for the absorption coefficient, we were able to demonstrate that the films were optically equivalent to a porous layer, with some dispersion in film thickness.The detailed analysis of the experimental transmittance data, fitted between 330 nm to 2200 nm, also enabled us to correlate the effective refractive index of each film with its deposition conditions.  相似文献   

16.
BaTi2O5 thin films were prepared on MgO (1 0 0) substrates by pulsed laser deposition. The effect of substrate temperature (Tsub) on the structural and optical properties of the films, such as crystal phase, preferred orientation, crystallinity, surface morphology, optical transmittance and bandgap energy, was investigated. The preferred orientation of the films changed form (7 1 0) to (0 2 0) depending on Tsub, and the b-axis oriented BaTi2O5 thin film could be obtained at Tsub = 973–1023 K. The surface morphology of the films was different with changing Tsub, which showed a dense surface with an elongated granular texture at Tsub = 973–1023 K. The crystallinity and surface roughness increased at the elevated substrate temperatures. The as-deposited BaTi2O5 thin films were highly transparent with an optical transmittance of ~70%. The bandgap energy was found to decrease with increasing substrate temperature, from 3.76 eV for Tsub = 923 K to 3.56 eV for Tsub = 1023 K.  相似文献   

17.
TiO2 and (NdyTi1  y)Ox thin films were deposited by reactive magnetron sputtering process from mosaic Ti–Nd targets and characterised by X-ray diffraction (XRD), Raman optical spectroscopy and nanoindentation technique. XRD measurements revealed that as-prepared titanium dioxide and TiO2 thin films with 4 and 7 at.% of Nd had nanocrystalline rutile structure, while coatings with larger amount of Nd were amorphous. Raman spectroscopy investigations showed that the increase of the neodymium concentration caused amorphisation of the coatings and hindered their crystal growth. All as-prepared coatings were transparent in the visible wavelength range with a transmittance of approximately 80%. The refractive index and extinction coefficient of the thin films gradually decreased with the increase of the neodymium concentration. Micro-mechanical properties, i.e. hardness and elastic modulus, were determined using traditional load-controlled nanoindentation testing and continuous stiffness measurements. The highest hardness and elastic modulus values were obtained for thin films with 7 at.% of Nd and were approximately 14.8 GPa and 166.3 GPa, respectively.  相似文献   

18.
In the present work, we have deposited calcium doped zinc oxide thin films by magnetron sputtering technique using nanocrystalline particles elaborated by sol–gel method as a target material. In the first step, the nanoparticles were synthesized by sol–gel method using supercritical drying in ethyl alcohol. The structural properties studied by X-ray diffractometry indicates that Ca doped ZnO has a polycrystalline hexagonal wurzite structure with a grain size of about 30 nm. Transmission electron microscopy (TEM) measurements have shown that the synthesized CZO is a nanosized powder. Then, thin films were deposited onto glass substrates by rf-magnetron sputtering at ambient temperature. The influence of RF sputtering power on structural, morphological, electrical, and optical properties were investigated. It has been found that all the films deposited were polycrystalline with a hexagonal wurtzite structure and preferentially oriented in the (0 0 2) crystallographic direction. They have a typical columnar structure and a very smooth surface. The as-deposited films show a high transmittance in the visible range over 85% and low electrical resistivity at room temperature.  相似文献   

19.
Indium tin oxide (ITO) thin films were deposited on glass substrates by RF sputtering system at different sputtering pressure (SP) (20–34 mTorr) and room temperature. The sputtering pressure effects on the deposition rate, electro-optical and structural properties of the as-deposited films were systematically investigated. The optimum sputtering pressure of 27 mTorr, giving a good compromise between electrical conductivity and optical transmittance was found to deposit films. The films were heat-treated in vacuum (200–450 °C) and their electro-optical and structural properties investigated with temperature. A criterion factor Q, which is the ratio between the normalized average transmission to normalized resistivity was defined. It has been observed that Q has its maximum value for heat treatment at 400 °C and the X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis proves the films have preferred crystal growth towards (2 2 2) direction and average size of grains are 35–40 nm.  相似文献   

20.
The effect of substrate temperature (Ts) on the properties of pyrolytically deposited nitrogen (N) doped zinc oxide (ZnO) thin films was investigated. The Ts was varied from 300 °C to 500 °C, with a step of 50 °C. The positive sign of Hall coefficient confirmed the p-type conductivity in the films deposited at 450 °C and 500 °C. X-ray diffraction studies confirmed the ZnO structure with a dominant peak from (1 0 0) crystal plane, irrespective of the variation in Ts. The presence of N in the ZnO structure was evidenced through X-ray photoelectron spectroscopy (XPS) analysis. The obtained high N concentration reveals that the 450 °C is the optimal Ts. Atomic force microscope (AFM) analysis showed that the surface roughness was increased with the increasing Ts until 400 °C but then decreased. It is found that the transmittance of the deposited films is increased with the increasing Ts. The optical band gap calculated from the absorption edge showed that the films deposited with Ts of 300 °C and 350 °C possess higher values than those deposited at higher Ts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号