首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Multiferroic Ba(FexTi1 ? x)O3 (BFT) nanorods were prepared by a chemical route using polyvinyl alcohol as surfactant. The presence of PVA in excess is responsible to convert cubic or spherical shaped nanoparticles into rodlike structure. Tetragonal phase and nano dimensions in the form of rods of BFT specimens are identified. These BFT nanorods show improvement in the coexistence of ferroelectricity and ferromagnetism of multiferroic properties than their nanoparticles. The effect of low dimensions of BFT rods to control dielectric constant with low loss up to higher frequency region has been observed. With 1% of Fe-doping BFT shows higher value of spontaneous polarization, saturation magnetization and dielectric constant than with other dopants.  相似文献   

3.
Rare-earth oxides of La2(ZrxCe1 ? x)2O7 for thermal barrier coatings (TBCs) are fabricated via a solid-state reaction at 1600 °C. As the phase formation, microstructure, and thermal properties of these oxides are examined, a fluorite–pyrochlore composite structure is found in the La2(ZrxCe1 ? x)2O7 system. This composite structure is composed of coarse Ce-rich fluorite and fine Zr-rich pyrochlore grains. From XRD and microstructural analysis, the lattice parameter and volume fraction of each phase are evaluated in order to obtain the intrinsic thermal conductivity value of composite-structured oxide with porosity calibration. The thermal conductivity of the composite structure is similar to that of pyrochlore La2Zr2O7, which is attributed to phonon scattering by phase boundaries.  相似文献   

4.
In this study we report the effect of Al2O3 on the low field magnetoresistance (LFMR) of (1 ? x) La0.7Ca0.3MnO3 + x Al2O3 composite synthesized through a solid-state reaction method combined with an energy milling method. Based upon a spin-polarized tunneling of conduction electrons at the grain boundaries, we have proposed a phenomenological model to explain the observed electrical transport behavior over the whole temperature range (5  300 K), especially the gradual drop of metal-insulator transition temperature (Tp = Tmax) as a function of increasing Al2O3 content, while the ferromagnetic–paramagnetic transition temperature (TC) remains almost constant (TC = 250 K).  相似文献   

5.
Rutile-doped hematite xTiO2(1 ? x)α-Fe2O3 (x = 0.0–1.0) nanostructures were synthesized using mechanochemical activation by ball milling. Their complex structural, magnetic and thermal properties were characterized by X-ray diffraction, Mössbauer spectroscopy and simultaneous DSC–TGA. XRD patterns yielded the dependence of lattice parameters and grain size as a function of ball milling time. For the molar concentrations x = 0.1 and 0.3, the Mössbauer spectra were fitted with one, two, three or four sextets, corresponding to the degree of Ti ion substitution of Fe ions in hematite lattice. After 12 h of ball milling, the completion of Ti ion substitution of Fe ions in hematite lattice occurs for x = 0.1 and 0.3. For x = 0.5 and 0.7, Mössbauer spectra fitting required sextets and a quadrupole-split doublet, representing Fe ions substituting Ti ions in the rutile lattice. The completion of Fe ion substitution of Ti ions in rutile lattice was not observed, as indicated by XRD patterns and Mössbauer spectra for these two molar concentrations. Simultaneous DSC–TGA measurements revealed that the mechanochemical activation by ball milling has a strong effect on the thermal behavior of this nanostructure system. The enthalpy dropped dramatically after 2 h of milling time, indicating the strong solid–solid interactions between TiO2 and α-Fe2O3 after ball milling. The change in weight loss of hematite was caused by the decrease of grain size and ion substitutions between Fe and Ti after mechanochemical activation.  相似文献   

6.
LaMg1 ? xNixAl11O19 (x = 0, 0.25, 0.5, 0.75, 1) ceramics are fabricated by pressureless-sintering method at 1700 °C for 10 h in air. The microstructure and thermo-optical properties of LaMg1 ? xNixAl11O19 ceramics are investigated by the X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy measurements. The influence of NiO doping on structure and thermo-optical properties of LaMg1 ? xNixAl11O19 ceramics is investigated. The partial substitution of Ni2+ for Mg2+ results in a significant increase in emissivity at low wavelengths as compared with unmodified LaMgAl11O19. When the Ni2+ content increases to x = 0.75 or above, LaMg1 ? xNixAl11O19 ceramics have a high emissivity value above 0.70 at low wavelengths at 500 °C. The measured emissivity of all LaMg1 ? xNixAl11O19 ceramics shows a similar trend in the wavelength range of 6 to 14 μm.  相似文献   

7.
Qiang Zhang  Zhenrong Li  Zhuo Xu 《Materials Letters》2011,65(19-20):3143-3145
The phase structure and phase transition of (1 ? x)Bi(Mg1/2Ti1/2)O3-xPbTiO3 (BMT-PT) ceramics with x = 0.0–0.42 were investigated. It was found that pure perovskite phases were achieved for x  0.28, while Bi4Ti3O12 or Bi12TiO20 phase existed for x  0.15. The anomaly dielectric peaks were observed around 620 °C for BMT-(0.28–0.38)PT samples, thus phase transition in (1 ? x)Bi(Mg1/2Ti1/2)O3-xPbTiO3 ceramics was studied using thermal expansion. It was found that dielectric anomalies at ~ 620 °C were resulted from the phase transition of the second phase and defects inside samples.  相似文献   

8.
Lead-free (Bi0.5Na0.5)1 ? xBaxTiO3 (BNBT) thin films with compositions at x = 0.055, 0.100, and 0.150 were prepared by chemical solution deposition on Pt/TiO2/SiO2/(100)Si substrates. The dielectric behavior of the films was studied, and the ferroelectric-antiferroelectric phase transition observed was used to situate the morphotropic phase boundary (MPB) for compositions with x ~ 0.100 (BNBT-10), a value that differs from that reported for bulk materials (BNBT-5.5). Extrinsic effects derived from the thin-film configuration (e.g., microstrains, residual stresses) may be responsible for the shift of the MPB. Consequently, the dielectric permittivity is significantly improved for this composition, showing the best ferroelectric response obtained up to now for films of the BNBT system (Pr = 13.0 μC/cm2, Ec = 70 kV/cm).  相似文献   

9.
Journal of Superconductivity and Novel Magnetism - We have studied the impact of the addition of the microparticles on the transport critical current density in YBCO superconductors in the vicinity...  相似文献   

10.
Cr doped ZnO (Zn1 ? xCrxO) thin films with different Cr concentrations (0.4, 1.5, and 8.9 at.%) were deposited on Si substrates using RF magnetron sputtering. Film crystal structure was characterized using X-ray diffraction, and vibrating sample magnetometer measurements were used to investigate their magnetic properties. Unstable ZnO structure is present at low Cr concentrations, while secondary phases appear at higher Cr concentrations. 8.9 at.% Zn1 ? xCrxO film exhibits room temperature ferromagnetism and high 325 K Curie temperature, even after 300 °C annealing for 1 h. This result is promising and demonstrates Cr doped ZnO film's potential use in practical applications.  相似文献   

11.
12.
Deformation-induced α2  γ phase transformation in high Nb containing TiAl alloys was investigated using high-resolution transmission electron microscopy (HREM) and energy dispersive X-ray spectroscopy (EDS). The dislocations appearing at the tip of deformation-induced γ plate (DI-γ) and the stacking sequence change of the α2 matrix were two key evidences for determining the occurrence of the deformation-induced α2  γ phase transformation. Compositional analysis revealed that the product phase of the room-temperature transformation was not standard γ phase; on the contrary, the product phase of the high-temperature transformation was standard γ phase.  相似文献   

13.
Ti1 ? xVxO2 (x = 0.0–0.10) nanopowders were successfully synthesized by a microwave-assisted sol–gel technique and their crystal structure and electronic structure were investigated. The products were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman and UV–Vis spectroscopy. The results revealed that TiO2 powders maintained the anatase phase for calcination temperature below 600 °C, but gradually changed to the rutile phase above 800 °C. The formation of the rutile phase was completed at 1000 °C. For Ti1 ? xVxO2 (x = 0.05) powders, the phase transformation appeared at 600 °C. The absorption edge of Ti1 ? xVxO2 (x > 0) powders broadened to the visible region with increasing V concentration and a strong visible light absorption was obtained with 10% V doping. V doping and subsequent coexistence of both anatase and rutile phases in our Ti1 ? xVxO2 nanoparticles are considered to be responsible for the enhanced absorption of visible light up to 800 nm.  相似文献   

14.
Combustion synthesis was adopted to successfully synthesize molybdenum–silicon–chromium (Mo?Si?Cr) alloys by the mode of self-propagating high-temperature synthesis (SHS). The experimental study of combustion synthesis of Mo?Si?Cr alloys was conducted on elemental powder compacts. Powder compacts with nominal compositions including MoSi2, (Mo0.95Cr0.05)Si2, (Mo0.90Cr0.10)Si2, (Mo0.85Cr0.15)Si2, (Mo0.80Cr0.20)Si2, (Mo0.75Cr0.25)Si2 and (Mo0.70Cr0.30)Si2 were employed in combustion synthesis experiments. The combustion mode, combustion temperature, flame-front propagation velocity and product structure were investigated. The results showed that Mo?Si?Cr alloys were synthesized by an unsteady state combustion mode with a spiral-trajectory reaction front. The peak combustion temperature reduced with the addition of Cr to Mo–Si system. The flame-front propagation velocity decreased with an increase in Cr content of the powder compact. The X-ray diffraction (XRD) results showed that the crystal structure of the combustion product changed from Cllb-type structure (Mo0.90Cr0.10)Si2 to C40-type structure (Mo0.85Cr0.15)Si2 with increase in Cr content of Mo–Cr–Si alloys. The intensities of diffraction peaks of the C40-type phase gradually increased with increase in Cr content.  相似文献   

15.
Ferroelectric ceramics in the vicinity of morphotropic phase boundary (MPB) with compositions represented as (1 ? x)[(1 ? y)(Pb(Mg1/3Nb2/3)O3)–y(Pb(Yb1/2Nb1/2)O3)]–xPbTiO3 were prepared by solid state reaction. The addition of PYbN to PMN–PT decreased the sintering temperature from 1200 °C (y = 0.25) to 1000 °C (y = 0.75). The PT content, where the MPB was observed, increased with the PYbN addition. A remanent polarization value of 28.5 µC/cm2 and a coercive field value of 11 kV/cm were measured from 0.62[0.25PMN–0.75PYbN]–0.38PT ceramics, which were close to the ones measured from PMN–0.32PT ceramics. In addition, the Curie temperature was found to increase with PYbN additions.  相似文献   

16.
The structural, electronic, magnetic and optical properties of Ga1  xCrxAs (x = 0, 6.25%, 12.5%) have been studied by first-principles calculations based on the HSE hybrid density functional theories. The optical properties, including the complex dielectric function, optical refractive index, extinction coefficient and absorption coefficient are discussed for radiation up to 15 eV. The results predicate that the system of Ga1  xCrxAs exhibits typical half-metallic properties, in which Cr forms deep levels in the forbidden band and reduces the energy gap, increases static dielectric constant and obviously red-shifts the absorption edge. With the increase of the fraction of Cr, the material gradually exhibits noticeable anisotropy in the photon energy range of 0–5 eV. In addition, the p-d hybridization reduces the magnetic moment of Cr from its free space charge value of 3 μB and a smaller atomic magnetic moments of As and Ga atoms are generated.  相似文献   

17.
This letter presents a comprehensive impedance spectroscopy characterisation of Magnéli phases (TinO2n ? 1) over a range of temperatures, which are of interest in electrochemistry and sensing applications, with the aim to enhance the understanding of their electrical properties and influence their microstructure. The impedance of the TinO2n ? 1 can be resolved into two different contributions, namely the grain bulk (RB) and grain boundaries (RGB). The ac conductivity increases with frequency and temperature, following a universal power law. The high relative permittivity (105–106), which is relatively frequency independent from 0.1 Hz to 100 kHz, is attributed to the presence of insulating grain boundaries (RGB >> RB) creating an Internal Barrier Layer Capacitor (IBLC) effect. Above 100 kHz, the grain boundaries begin to contribute to the ac conductivity and the permittivity drops sharply.  相似文献   

18.
19.
The novel Fe/Nb co-doped SrCo1 ? 2x(Fe,Nb)xO3 ? δ (x = 0.05, 0.10) perovskite oxides were synthesized by the solid-state method. Structural and chemical stability of the SrCo1 ? 2x(Fe,Nb)xO3 ? δ (x = 0.05, 0.10) oxides were studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and X-ray diffraction (XRD). The results demonstrated that the structural and chemical stability of the Fe/Nb co-doped SrCo1 ? 2x(Fe,Nb)xO3 ? δ (x = 0.05, 0.10) is improved significantly. The oxygen sorption properties of the SrCo1 ? 2x(Fe,Nb)xO3 ? δ (x = 0.05, 0.10) oxides were investigated between 300–900 °C in air, and the high oxygen sorption capacity of 11.5 and 10.3 mL O2 (STP)/g oxide, respectively, are obtained.  相似文献   

20.
Magnetocaloric effect near room temperature is enhanced by minor Al substitution in Mn1 ? xAlxAs compounds (x = 0, 0.015, 0.03). The Curie temperature and magnetic entropy change can be tuned by Al concentration. Under a field change of 2 T, which is below the critical field of metamagnetic transition and easy to reach in applications, a large reversible magnetic entropy change 28.5 J kg? 1 K? 1, and a huge magnetic entropy change 65.7 J kg? 1 K? 1 under a field change of 5 T is obtained at x = 0.015 near room temperature. Compared with that of MnAs mother alloy, it is concluded that minor Al substitution is beneficial for enhancing the magnetic entropy in Mn1 ? xAlxAs alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号