首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pr3+ doped strontium fluoride (SrF2) was prepared by hydrothermal and combustion methods. The phosphors were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and Photoluminescence (PL) spectroscopy. XRD patterns indicated that the samples were completely crystallized with a pure face-centred cubic (space group: Fm3m) structure. SEM images showed different morphologies which is an indication that the morphology of the SrF2:Pr3+ phosphor strongly depends on the synthesis procedure. Both the SrF2:Pr3+ samples exhibit blue–red emission centred at 488 nm under a 439 nm excitation wavelength (λexc) at room temperature. The emission intensity of Pr3+ was also found to be dependent on the synthesis procedure. The blue–red emission has decreased with an increase in the Pr3+ concentration. The optimum Pr3+ doping level for maximum emission intensity was 0.4 and 0.2 mol% for the hydrothermal and combustion samples, respectively. The reduction in the intensity for higher concentrations was found to be due to dipole–dipole interaction induced concentration quenching effects.  相似文献   

2.
Fe nanodots were grown on SrF2 (111) surfaces deposited on Si (111) substrates in a molecular beam epitaxy (MBE) system. The crystallographic and surface morphological characters were studied by reflection high-energy electron diffractometry (RHEED) and atomic force microscopy (AFM). The triangular terraces and step edges of SrF2 were formed at 600 °C, and its crystallinity was high in quality. Fe (111) layers with thicknesses between 0.5 and 5 nm were grown epitaxially on this SrF2 layer at room temperature (RT) with the help of electron beam exposure. In 1-nm thick Fe layers deposited at RT, the number density was about 2 × 1012 cm 2. At the end of this report, an epitaxial growth of the SrF2/Fe/SrF2 tri-layer on Si (111) is briefly described.  相似文献   

3.
Stearic acid method (SAM) was developed to synthesize series of pyrochlore Ln2Ti2O7 (Ln = Sm, Gd, Dy, Er) nanocrystals. The synthesis process was monitored by X-ray diffraction, Thermal–gravimetric–differential thermal analysis and Fourier Transform InfraRed methods. Comparing with traditional solid-state reaction (SSR), Ln2Ti2O7 can be synthesized at relatively low temperature (700–800 °C) with shortened reaction time (2–4 h). The average particle size of Ln2Ti2O7 was greatly reduced (ca. 40 nm) and the BET surface area was increased (ca. 12 m2/g) by using SAM. From the X-ray diffraction patterns, we found that Ln has an effect on the crystal structure of Ln2Ti2O7, every lattice peak shifted to larger angle slightly with the increasing atomic number of Ln. Also, the lattice constant of Ln2Ti2O7 was calculated by Jade.5 and found it decreased along with the decrease of ionic radius of Ln3+. The morphology of obtained Ln2Ti2O7 was determined by transmission electron microscopy technique. Results showed that the obtained Ln2Ti2O7 were all square-like and the interplanar distance of Ln2Ti2O7 (Ln = Sm, Gd, Dy, Er) according to (111) plane was 0.65, 0.64, 0.63, and 0.62 nm respectively, which was measured from High Resolution Transmission Electron Microscopy images. Possible reason for this phenomenon was presented.  相似文献   

4.
Flower-like Y2O3:Eu3+ microspheres with strong red photoluminescent emission were successfully synthesized through a controlled solvothermal approach followed by a subsequent heat treatment. The experimental results showed that the flower-like microspheres were composed of nanopetals with the thickness of about 50 nm, and the solvent properties as well as the characteristics of the reactants were very crucial for the morphology-controlled process. Meanwhile, the formation mechanism study revealed a possible assembly and etching process. In addition, their photoluminescence property investigation indicated that the flower-like products exhibited the strongest red emission corresponding to 5D0  7F2 transition (609 nm) among the synthesized samples, implying better photoluminescence property provided by the assembled spheres with higher crystallinity and better size-distribution and suggesting their potential application in optoelectronics.  相似文献   

5.
《Optical Materials》2005,27(3):475-479
Optical spectroscopy of the green emission of erbium in KGd(WO4)2 (KGW) single crystals codoped with ytterbium ions is investigated. To do this, we firstly grew good-optical-quality KGW single crystals doped with Er3+ and Yb3+ at several dopant concentrations by the Top-seeded-solution-growth slow-cooling method (TSSG). Green photoluminescence of Er3+ in KGW host was studied at room temperature (RT) and low temperature (10 K) by means of Yb3+ sensitization after infrared excitation at 981 nm (10194 cm−1). We calculated the emission and gain cross-sections and compared these with those of other known Er3+-doped laser materials like LiYF4 :Er (YLF:Er) and Y3Al5O12:Er (YAG:Er) at RT. Our study also focused on determining the optimal concentration of ions for generating the most intense green emission. We measured the lifetime of the green emission after infrared pump at several Yb3+ concentrations. From the low-temperature emission experiments, we determined the energy position of the sublevels of the ground state of erbium.  相似文献   

6.
The luminescence and scintillation properties of SrI2:0.5%Yb2+ have been investigated. SrI2:Yb single crystals were grown by the vertical Bridgeman method from the melt. They showed a light yield of 38,400 ph/MeV and energy resolution of 12.5% for the 662 keV full absorption peak. Yb2+ photoluminescence intensity and decay time were studied between 78 and 600 K. Two emission bands centered at 418 and 446 nm were observed and ascribed to spin-allowed and spin-forbidden Yb2+ 5d-4f transitions, respectively. Their corresponding room-temperature decay time constants are 710 ns and 77 μs. Both, the emission intensities and the decay time constants vary with temperature. The obtained results were interpreted using a model of self-absorption of Yb2+ emission and a model of non-radiative relaxation of the electron from the low spin to the high spin 4f135d Yb2+ excited states. The radiative lifetime of the low spin Yb2+ excited state was determined as 400 ns.  相似文献   

7.
A mild hydrothermal process to prepare Ba2SbLnO6 (Ln = Pr, Nd, Sm, Eu) perovskite-type oxides are presented. These perovskites were characterized on the basis of X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), inductively-coupled plasma spectra (ICP) techniques. Primary structure was confirmed using Rietveld method based on XRD data shows that the likely space groups of Ba2SbLnO6 are R-3 for Ln = Pr and Nd and Fm-3m for Ln = Sm and Eu, respectively. The measurement of Mössbauer effect of the 37.2 keV γ transition of 121Sb indicates that the isomer shift of these perovskites falls in the region of the Sb5+ and reflects some hybridized-orbital behavior in Sb–O bonds.  相似文献   

8.
SiO2 added phosphors, CaAl2Si2O8:Eu2+ + xSiO2 (x = 0, 1, 2, 3, 4, 5, 6 and 13 mol) were synthesized by a novel liquid phase precursor (LPP) method. The photoluminescence properties of phosphor added by 5 mol of SiO2 showed 110% enhancement in the emission intensity compared to the CaAl2Si2O8:Eu2+ phosphor. A broad emission and excitation wavelength was observed approximately from 400 nm to 600 nm centered at 430 nm and from 280 nm to 400 nm centered at 365 nm, respectively. Photoluminescence intensity of the phosphors increased continuously by SiO2 addition up to x = 5 mol and then it decreased with further addition of SiO2. The observed photoluminescence properties of the phosphors were discussed related to their crystalline structure and morphology.  相似文献   

9.
《Materials Research Bulletin》2006,41(11):2147-2153
Single phase of Eu3+-doped YVO4 nanophosphors at different pH values were synthesized by a mild hydrothermal method. Their photoluminescence were evaluated under UV and VUV region, respectively. Monitoring by 619 nm emission, broad bands at around 143 nm, 200 nm, 260 nm were observed in the excitation spectrum of YVO4:5 mol%Eu3+. These peaks could be assigned to host absorption, the overlap of the VO43− host absorption and charge transfer transition between Eu3+ and O2−, respectively. Both 254 nm and 147 nm excitations, the emission spectra were identical, they were all composed of Eu3+ emission transitions arising mainly from the 5D0 level to the 7FJ (J = 1, 2, 3, 4) manifolds. With the pH values ranging from 7 to 11, the relative intensity of the emission spectra were decreasing, and the position of the predominant peak (5D0  7F2) was changed from 619 nm to 615 nm when the pH values changed from 7 to 11.  相似文献   

10.
The Nd-doped and Er-doped LuF3 single crystals were grown by the micro-pulling-down method to study their scintillation properties in the vacuum-ultraviolet (VUV) region. The doubly Nd–Er codoped single crystal was grown to study possibility of scintillation performance improvement by energy transfer from Er3+ to Nd3+ ions. The LiF flux was to avoid phase transition below melting temperature. The 1%Nd-doped sample showed the highest overall scintillation efficiency under X-ray excitation which was 7 times as high as that of the LaF3:Nd 8% standard. The leading Nd3+ 5d–4f emission was situated at 176 nm, while the Er3+ 5d–4f emission for Er-doped samples was observed at 163 nm, which better matches the sensitivity of some VUV-sensitive photodetectors. The optimum Er concentration was determined to be around 1–3 mol%. No Er3+ 5d–4f emission was observed for the doubly Er,Nd-codoped sample due to energy transfer from the Er3+ to Nd3+ ions. Slight improvement of the light yield was observed in the doubly-doped sample with respect to the Nd-only doped one.  相似文献   

11.
Fine powders of Y2Sn2O7 nanocrystals with pyrochlore structure have been successfully synthesized by the hydrothermal method in an alkaline system. The samples were characterized by X-ray diffraction, Fourier transform infrared and Raman spectroscopy. Furthermore, photoluminescence characterization of the Y2Sn2O7 nanocrystals doped with 5 mol% Eu3+ was carried out, and the results show that there were some intense and prevailing emission peaks located at 580–635 nm.  相似文献   

12.
Double-emitting blue phosphor Sr3(PO4)2: Eu2+, Dy3+ was synthesized by solid state reaction under H2 atmosphere. XRD exhibited the pure hexagonal phase of the prepared phosphor. The photoluminescence results showed that all samples had intense broad absorption band between 250 and 450 nm, which matched well with the near-UV (350–420 nm) emission band of InGaN-based chips. The emission spectrum of Sr3(PO4)2: Eu2+, Dy3+ consisted of two broad bands, peaked at 485 nm and 410 nm, which originated from two luminescent centers, related to 4f65d1  4f7 transition of Eu2+ in six-coordinated Sr(I) and ten-coordinated Sr(II) sites respectively. The intensity ratio of two emission bands could be easily tuned by adjusting Dy3+ co-doping content, which resulted in color-tunable luminescence in bluish green region to purplish blue region.  相似文献   

13.
A green-emitting phosphor of Eu2+-activated Sr5(PO4)2(SiO4) was synthesized by the conventional solid-state reaction. It was characterized by photoluminescence excitation and emission spectra, and lifetimes. In Sr5(PO4)2(SiO4):Eu2+, there are at least two distinguishable Eu2+ sites, which result in one broad emission situating at about 495 nm and 560 nm. The phosphor can be efficiently excited in the wavelength range of 250–440 nm where the near UV (~ 395 nm) Ga(In)N LED is well matched. The dependence of luminescence intensities on temperature was investigated. With the increasing of temperature, the luminescence of the phosphor shows good thermal stability and stable color chromaticity. The luminescence characteristics indicate that this phosphor has a potential application as a white light emitting diode phosphor.  相似文献   

14.
《Optical Materials》2014,36(12):2062-2067
The UV–Vis luminescence of NaLnF4:Pr3+ (Ln = Y, Lu) materials can be efficiently excited by vacuum UV radiation (VUV) such as the 172 nm emission of mercury-free Xe-discharge lamps. In this work, the optical properties of the cubic α-phase and the hexagonal β-phase of NaLnF4:Pr3+ (Ln = Y, Lu) powders are compared regarding particle sizes in the nano- and micrometer regime. Upon VUV excitation, the emission spectra of both crystal phases are found to be dominated by intraconfigurational [Xe]4f2–[Xe]4f2 transitions, which is explained by the chemical properties of the ternary fluorides. Furthermore it is observed that the emission and excitation spectra of nano- and micro-scale powders are very similar, but that the luminescence intensity is affected by the average particle size.  相似文献   

15.
《Materials Research Bulletin》2006,41(10):1854-1860
The luminescent properties of Sr3Al2O6 doped and co-doped with the rare earths (Ln3+ = Eu3+, Dy3+, Eu3+ and Dy3+) have been studied. The material was synthesized by reflux method and fired up to 900 °C for 16 h. The X-ray diffraction pattern confirms that the synthesized material consists of Sr3Al2O6 as main phase. The photoluminescence study gives a clear evidence of europium stabilizing in trivalent form and surprisingly with no presence of europium in the divalent state. The addition of Dy3+ as co-dopant in the Sr3Al2O6:Eu3+ matrix shows the quenching effect in the photoluminescence (PL) spectra. The photoluminescence intensity of Eu3+ falls gradually on increasing the concentration of the co-dopant in the range from 0.1 mole% to 2.0 mole%. The significantly intense thermoluminescence (TL) glow peak was obtained for Sr3Al2O6:Eu3+, Dy3+ (1% and 0.1%) at around 194 °C when irradiated with 10 kGy dose from Sr-90 β source.  相似文献   

16.
《Optical Materials》2014,36(12):2290-2295
In this paper, we investigate the spectroscopic properties of and energy transfer processes in Er–Tm co-doped bismuth silicate glass. The Judd–Ofelt parameters of Er3+ and Tm3+ are calculated, and the similar values indicate that the local environments of these two kinds of rare earth ions are almost the same. When the samples are pumped at 980 nm, the emission intensity ratio of Tm:3F4  3H6 to Er:4I13/2  4I15/2 increases with increased Er3+ and Tm3+ contents, indicating energy transfer from Er:4I13/2 to Tm:3F4. When the samples are pumped at 800 nm, the emission intensity ratio of Er:4I13/2  4I15/2 to Tm:3H4  3F4 increases with increased Tm2O3 concentration, indicating energy transfer from Tm:3H4 to Er:4I13/2. The rate equations are given to explain the variations. The microscopic and macroscopic energy transfer parameters are calculated, and the values of energy transfer from Er:4I13/2 to Tm:3F4 are found to be higher than those of the other processes. For the Tm singly-doped glass pumped at 800 nm and Er–Tm co-doped glass pumped at 980 nm, the pumping rate needed to realize population reversion is calculated. The result shows that when the Er2O3 doping level is high, pumping the co-doped glass by a 980 nm laser is an effective way of obtaining a low-threshold ∼2 μm gain.  相似文献   

17.
Spherical YVO4:Eu3+ microstructures were hydrothermally synthesized by the reaction of NH4VO3, Y2O3, and Eu2O3 at 180 °C for 24 h with the assistance of polyvinylpyrrolidone (PVP) as a surfactant. The resulting products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectroscopy. The experimental results showed that ball-like YVO4:Eu3+ microspheres with a diameter of about 4–5 μm, corresponding to the SEM observations, formed at 180 °C for 24 h using 0.2 g PVP with the molecular weight of 20,000 g mol?1. The amount of PVP and the reaction time of hydrothermal processing were found to play a key role in the formation of YVO4:Eu3+ microspheres. It has been observed that the relative luminescence intensities of the as-synthesized samples increased with increasing hydrothermal reaction times due mainly to the increase of crystallinity.  相似文献   

18.
《Advanced Powder Technology》2014,25(5):1449-1454
Rod-like and flake-like up-converting Y2O3:Yb3+/Ho3+ particles which are composed of nanoparticles with size less than 100 nm, are prepared by a simple hydrothermal processing at 473 K (3 h) followed by additional thermal treatment at 1373 K (3 and 12 h). The effect of precursor pH value on the formation of Y2O3:Yb3+/Ho3+ is followed through X-ray powder diffractometry (XRPD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Structural refinement confirms formation of the cubic bixbyte structure (S.G. Ia-3) with the non-uniform accommodation of dopants at C2 and S6 cationic sites. Under 978 nm laser excitation, strong green (530–570 nm) up-conversion is observed in all samples. The emission shows a decrease in intensity with an increase in external temperature, indicating FIR (fluorescence intensity ratio) based temperature sensing behavior of 0.52% for the 5F4  5I8/5S2  5I8 transitions.  相似文献   

19.
Novel Eu2+-doped Ca2AlSi3O2N5 phosphors with a general formula of EuxCa2?xAlSi3O2N5 were successfully prepared via a solid-state reaction method under a nitrogen atmosphere. The produced phosphors were effectively excited by UV–vis light in the wavelength range between 250 and 400 nm, and featured an intense green emission band which peaked at about 500 nm. The emission spectra featured a red-shift over increasing Eu2+ content and the temperature of heat treatment. The maximum intensity of emission was obtained for x = 0.014 and heat treatment at 1450 °C. The photoluminescence properties of the produced Ca2AlSi3O2N5:Eu2+ phosphors qualify them for consideration in potential use as green phosphors in UVLED-based white LED.  相似文献   

20.
《Materials Letters》2007,61(4-5):1210-1213
Well-crystalline Pb(Zr0.52Ti0.48)O3 square platelets, with dimensions of about 1 × 0.65 × 0.16 μm3, have been synthesized by hydrothermal method at low temperature. X-ray diffraction, micro-Raman spectrometry, and field emission scanning electron microscope were employed to study the crystal structure and morphologies of the products. Energy dispersive X-ray spectroscopy was used to analyze the elemental composition of the products. The photoluminescence of the products showed a strong narrow blue-light emission at 453 nm and a weak one at 468 nm at room temperature. The possible mechanisms for the blue-light emission are proposed in this report. The photoluminescence of this ferroelectric material is one more interesting property for technological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号