首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports the synthesis of Sn1?x Mn x O2 (for x=0, 0.01, 0.05 and 0.10) nanoparticles using the co-precipitation method. X-ray diffraction (XRD) results show that all samples are single phase with tetragonal crystalline structure. Rietveld refinements from XRD patterns show that the samples present particle average sizes of 4–30 nm confirmed by scanning electron microscopy. Magnetization results for SnO2 nanoparticles at 5% and 10% of Mn synthesized at 800?°C exhibit a ferromagnetic behavior at room temperature and an increasing of the magnetization for increasing doping concentration. On the other hand, samples synthesized at 300?°C are paramagnetic.  相似文献   

2.
阳生红  陈菲  张曰理 《材料导报》2017,31(Z1):269-272
分别采用固相烧结法及激光液相烧蚀(LAL)技术,成功制备出Co掺杂CeO_2稀磁氧化物陶瓷块体和纳米颗粒。XRD和SEM研究发现所制备的材料具有良好的结晶性和形貌。Co掺杂CeO_2稀磁氧化物陶瓷块体和纳米颗粒均为多晶立方结构,与纯立方相的CeO_2结构相同,说明Co掺杂未形成其他结构和杂相。磁性测量表明固相烧结法和激光烧蚀液相法制备的Co掺杂CeO_2样品均具有较高的室温铁磁性,且远高于文献中报道的结果。将陶瓷块材经激光烧蚀成纳米颗粒后,纳米颗粒的铁磁性与陶瓷块材保持一致。这说明激光烧蚀法制备的纳米材料可以很好地保持母材的特性,是一种很好的纳米颗粒制备方法。根据XRD和SEM研究结果,笔者认为Co掺杂CeO_2陶瓷块材及纳米颗粒的室温铁磁性是内禀性质;磁性产生的机理源于氧空位诱导的铁磁性耦合。  相似文献   

3.
We report room temperature ferromagnetism in Ni doped CeO2 nanoparticles using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), and dc magnetization measurements. Nanoparticles of Ce(1-x)Ni(x)O2 (0.0 < or = x < or = 0.10) were prepared by using a co-precipitation method. XRD measurements indicate that all samples exhibit single phase nature with cubic structure and ruled out the presence of any secondary phase. Lattice parameters, strain and particle size calculated from XRD data have been found to decrease with increase in Ni doping. Inter-planner distance measured from HR-TEM images for different Ni doped samples indicate that Ni ions are substituting Ce ions in CeO2 matrix. Magnetization measurements performed at room temperature display weak ferromagnetic behavior of Ce(1-x)Ni(x)O2 (0.0 < or = x < or = 0.10) nanoparticles. Magnetic moment calculated from magnetic hysteresis loop was found to increases with Ni doping up to 7% and then start decreasing with further doping.  相似文献   

4.
Mn-doped CeO2 nanorods have been prepared from CeO2 particles through a facile composite-hydroxide-mediated (CHM) approach. The analysis from X-ray photoelectron spectroscopy indicates that the manganese doped in CeO2 exists as Mn2+. The magnetic measurement of the Mn-doped CeO2 nanorods exhibits an enhanced ferromagnetic property at room temperature with a remanence magnetization (Mr) of 1.36 × 10−3 emu/g and coercivity (Hc) of 22 Oe. Comparative UV-visible spectra reveal the shift of the absorption peak of the CeO2 from ultraviolet region to visible light region after being doped with Mn. The room temperature ferromagnetic properties and light absorption of the Mn-doped CeO2 nanorods would have potential applications in photocatalysis and building of photovoltaic devices.  相似文献   

5.
This work reports on seed-mediated synthesis and size control of monodispersed CeO2 nanoparticles. CeO2 nanoparticles of mean size smaller than 2 nm were first prepared by a simple mixing of aqueous solution of cerium (IV) sulfate and ammonia solution at ambient conditions. Using these as-prepared fine particles as the tiny seeds, tunable sizes of CeO2 nanoparticles were achieved via a facile hydrothermal treatment. All samples were characterized by X-ray diffraction (XRD), infrared (IR) spectroscopy, UV-vis spectroscopy, and thermogravimetric analysis (TGA). It is shown that in comparison with other inorganic cerium salts such as cerium (III) nitrates, cerium (IV) sulfate appears more suitable for forming CeO2 nanoparticles at room temperature. Sulfate groups are strongly thermodynamically adsorbed on CeO2 nanoparticle surfaces. The formation mechanism, surface hydration and sulfation characteristics of the resulting CeO2 nanoparticles are also discussed.  相似文献   

6.
Bundle of CeO2 nanowires have been successfully synthesized by a simple hydrothermal process using Ce(NO3)3·6H2O as cerium source and NaH2PO4·2H2O as mineralizer, into which no surfactant or template was introduced. The synthesized nanowires were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), Raman spectroscopy and magnetization measurements. The XRD results indicated that CeO2 nanowires have fluorite structure. Magnetization measurements indicate that CeO2 nanowires exhibit room temperature ferromagnetism with remanent magnetization (Mr) and coercivity (HC) of about 7.44 × 10? 4 (emu/g) and 27.19 Oe, respectively, which may results due to the presence of defects in the CeO2 nanowires.  相似文献   

7.
The Ni1?xMnxO (x?=?0.00, 0.02, 0.04 and 0.06) nanoparticles were synthesized by chemical precipitation route followed by calcination at 500?°C for 4?h. The prepared samples were characterized by energy dispersive analysis of X-rays (EDAX), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and vibrating sample magnetometer (VSM). Rietveld refinement of XRD data confirms the structural phase purity and XRD patterns are well indexed to NaCl like rock salt fcc crystal structure with Fm-3m space group. The particle size of Mn doped samples is found to be less than that of pure NiO sample. However, the particle size increases slightly on increasing the Mn concentration due to surface/grain boundary diffusion. The vibrational properties of the synthesized nanoparticles were investigated by Raman and FT-IR spectroscopy. The results of room temperature magnetization (M-H) and temperature dependent magnetization (M-T) measurements are explained with a core-shell model. The synthesized nanoparticles show weak ferromagnetic and super-paramagnetic like behavior at room temperature.  相似文献   

8.
Rare-earth doped CeO2 solid solution nanorods were successfully prepared via a simple co-precipitation method without surfactants at room temperature and pressure. The products were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of the doping contents, pH values, aging times and the precipitation agents on the structure and morphology were investigated. We found that the yield and uniformity of the nanorods were significantly improved by doping with optimum contents of Nd, Sm, Eu, Gd or Y. The intrinsically anisotropic structure of the rare-earth hydroxides is the driving force for the growth of the nanorods. Raman spectra show a great increase in oxygen vacancy concentrations on the doped CeO2 solid solutions compared with that of pure CeO2.  相似文献   

9.
In the present work, Ni doped In2O3 nanoparticles were prepared using simple co-precipitation method. From the x-ray diffraction analysis it is observed that all samples exhibit single phase polycrystalline nature. All the diffraction lines correspond to the bixbyite type cubic structure. A UV visible analysis reveals that optical band gap decreases from 4.63 to 3.84 eV with Ni doping. DC magnetization measurements reveal that Ni doped In2O3 nanoparticles exhibit room temperature ferromagnetism.  相似文献   

10.
Structural, optical and room temperature magnetic properties of Mn-doped MgO nanoparticles with Mn fractions (5–50 at.%), were investigated. The as-prepared pure MgO, with grain size of about 15 nm, exhibits two magnetization components, one is diamagnetic and another is superparamagnetic. After removing the diamagnetic contribution, the magnetization curve exhibits superparamagnetic behavior which may be attributed to vacancy defects. As the Mn content increases, the lattice parameter decreases, the ferromagnetism appears and the emission bands were considerably blue shifted. First principle electronic structure calculations reveal the decrease of both the gap and the Curie temperature with increasing Mn concentration. The obtained results suggest that both Mn doping and oxygen vacancies play an important role in the development of room temperature ferromagnetism.  相似文献   

11.
In this paper, we elucidate several specific magnetic properties of Fe 3 O 4nanoparticles synthesized by coprecipitation method. The characterizations by X-ray diffraction technique (XRD) and scanning electron microscopy (SEM) showed the particles to be of spinel structure and spherical shapes whose diameter could be controlled in the range from 14 to 22 nm simply by adjusting the precursor salts concentration and coprecipitation temperature. Magnetic properties of the Fe 3 O 4 nanoparticles measured by using vibration sample magnetometer (VSM) indicated the saturation magnetization and blocking temperature to increase with the particles size. Fe 3 O 4 nanoparticles with crystal size smaller than 22 nm exhibits superparamagnetic behavior at room temperatures. Characteristic magnetic parameters of the particles including saturation magnetization, effective anisotropy constant, and magnetocrystalline anisotropy constant have been determined. The observed decrease of saturation magnetization was explained on the base of core-shell model. A simple analysis indicated that the shell thickness decreases with an increase in particle size.  相似文献   

12.
Jianwei Wang 《Materials Letters》2010,64(21):2373-23676
A facile polyol process was established to prepare superparamagnetic Fe-doped ZnO nanoparticles in a liquid polyol using Fe(acac)3 and Zn(acac)2 as precursors and triethylene glycol as the solvent. Scanning electron microscopy (SEM) images showed that as-prepared nanoparticles are uniform in size. X-ray diffraction (XRD) analysis revealed that the nanoparticles are of wurtzite structure without an impure phase. The successful doping of the Fe element into the ZnO host was evident by XRD lines shifting and energy dispersive X-ray spectroscopy (EDS) results. Magnetization measurements demonstrated that the Fe-doped ZnO nanoparticles were superparamagnetic at room temperature.  相似文献   

13.
Diluted magnetic CdS:Mn nanoparticles were synthesized by the aqueous solution method with different manganese (Mn2+) concentrations (x=7?C10?atom?%) at room temperature in nitrogen atmosphere and capped with Thiogelycerol. The X-ray diffraction patterns of CdS nanoparticles with different Mn doping concentration indicated that samples have hexagonal structure at room temperature. Energy dispersive X-ray spectroscopy confirmed incorporative of Mn ions in CdS nanoparticles. UV-Visible spectroscopy is used to investigate optical absorption of Mn-doped CdS. From photoluminescence measurement it was found that the intensity of the luminescence spectra decreases by increasing Mn2+ dopant ions at high precursor concentration. Also, the room temperature ferromagnetic behavior of Mn-doped CdS nanoparticles is discussed by using hysteresis measurement results.  相似文献   

14.
Nanocrystalline ceria (CeO2) particles have been successfully prepared by microwave-assisted heating technique from an aqueous solution containing ammonium Ce(IV) nitrate and sodium hydroxide. Further thermal treatment of the as-prepared powder at 500 °C resulted in the formation of the well-crystallized CeO2 nanoparticles with an average crystal size of about 8 nm, varying with the heating temperature. The as-prepared powder and the CeO2 nanoparticles were examined using X-ray diffraction (XRD) and transmission electron microscope (TEM) techniques. It was found that the morphologies of the synthesized powder show from rod-like for the as-prepared sample to sphere-like for the heat-treated nanoparticles. Mechanism of CeO2 nanocrystallite growth during annealing is primarily investigated.  相似文献   

15.
The effect of Zn and Cr doping on the transport and magnetic properties of MnV2O4 have been investigated using resistivity, thermoelectric power (TEP), magnetization, neutron diffraction and X-ray diffraction techniques. It is observed, that with increase in Zn substitution the non-collinear orientation of Mn spins with the V spins decreases which effectively leads to the decrease of structural transition temperature more rapidly than Curie temperature. Investigations also show that with Zn doping both the Curie temperature (T C) and structural transition temperature (T S) decrease, while the gap between them increases rapidly. On the other hand, with Cr doping on the V site the T C remains almost constant but T S decreases rapidly. Moreover, with Zn doping both resistivity and TEP decrease, whereas with 10 % Cr doping the TEP decreases and a change of sign occurs indicating an increase in the band gap. This leads to the decrease of the mobility of the polaronic holes than the mobility of the electronic polarons at low temperature.  相似文献   

16.
The structural, magnetic, and electronic structural properties of Ni0.2Cd0.3Fe(2.5-x)Al(x)O4 ferrite nanoparticles were studied via X-ray diffraction (XRD), transmission electron microscopy (TEM), DC magnetization, and near-edge X-ray absorption fine-structure spectroscopy (NEXAFS) measurements. Nanoparticles of Ni0.2Cd0.3Fe(2.5x)Al(x)O4 (0 < or = x < or = 0.4) ferrite were synthesized using the sol-gel method. The XRD and TEM measurements showed that all the samples had a single-phase nature with a cubic structure, and had nanocrystalline behavior. From the XRD and TEM analysis, it was found that the particle size increases with Al doping. The DC magnetization measurements revealed that the blocking temperature increases with increased Al doping. It was observed that the magnetic moment decreases with Al doping, which may be due to the dilution of the sublattice by the doping of the Al ions. The NEXAFS measurements performed at room temperature indicated that Fe exists in a mixed-valence state.  相似文献   

17.
Mn-doped CeO2 nanorods have been prepared from CeO2 particles through a facile composite-hydroxide-mediated (CHM) approach. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The analysis from the X-ray photoelectron spectroscopy indicates that the manganese doped in CeO2 exists as Mn4 + . The responses to humidity for static and dynamic testing proved doping Mn into CeO2 can improve the humidity sensitivity. For the sample with Mn% about 1·22, the resistance changes from 375·3 to 2·7MΩ as the relative humidity (RH) increases from 25 to 90%, indicating promising applications of the Mn-doped CeO2 nanorods in environmental monitoring.  相似文献   

18.
In this study Mn?CZn ferrite nanoparticles (Mn(1?x)Zn x Fe2O4, x=0, 0.3 and 0.5) were produced by a chemical co-precipitation method. The structure and size of the Mn?CZn ferrite nanoparticles were characterized using X-ray diffraction (XRD) and Transmission electron microscopy (TEM). Results show that the ferrite nanoparticles have the spinel structure. It was found that the size of Mn?CZn ferrite nanoparticles decreases by increasing of the Zn concentration. The magnetic properties of Mn?CZn ferrite nanoparticles were investigated with a vibrational sample magnetometer (VSM) and it was observed that Mn0.7Zn0.3Fe2O3 ferrite nanoparticles have the maximum saturation magnetization and that the initial susceptibility decreases with the increase in Zn concentration.  相似文献   

19.
《Advanced Powder Technology》2019,30(11):2841-2850
Mn doped CuO/ZnO heterostructure exhibited significant room temperature ferromagnetism and visible light photocatalytic properties. Phase analysis for the pure, Mn and Fe doped CuO/ZnO nanocomposites evidently confirmed the formation of CuO and ZnO phases in each composite without any impurities. Based on Rietveld refinement analysis, the inclusion of Mn ions into CuO/ZnO nanocomposite decreased the unit cell volume of both oxides while Fe ions lead to lattice expansion. Mn ions induced the formation of ZnO hexagonal nanorods in CuO/ZnO nanocomposite. Nano-flakes and spherical nanoparticles shapes were seen for Fe doped CuO/ZnO nanocomposites. The characteristics IR absorption bands of CuO and ZnO overlapped together in their nanocomposites structure. From Kubelka-Munk plots, the incorporation of Mn ions enabled the ZnO band gap to absorb in the visible light region. Pure CuO/ZnO nanocomposite exhibited room temperature ferromagnetism with saturation magnetization (Ms) of 0.042 emu/g and coercivity (Hc) of 547 Oe. The ferromagnetic properties of the pure CuO/ZnO nanocomposite were greatly improved by Mn and Fe doping and the saturation magnetization extremely jumped to 0.86 and 0.85 emu/g, respectively. High photocatalytic activity, 98%, with good reusability for methyl orange (MO) degradation under visible light irradiation was achieved by 4 wt% Mn doped CuO/ZnO nanocomposite. A relation between the crystallinity, band gap and photocatalytic activity with dopant type (Mn or Fe) incorporated into CuO/ZnO nanocomposites was noticed. In contrary to Fe dopant, Mn as dopant played successful roles in improving the crystallinity, band gap and photocatalytic properties of CuO/ZnO nanocomposite. Multifunctional properties can be realized by combining different oxides in heterostructure form and using doping technique.  相似文献   

20.
Local valence and Ca-doping effect in polycrystalline La2NiMnO6 have been investigated by using X-ray diffraction, X-ray absorption spectroscopy, Raman spectrum, and magnetometry. The refinement of X-ray diffraction data shows that all the samples are crystallized in pure double perovskite phase. The refined Ni(Mn)–O bond lengths and X-ray absorption spectroscopy provide evidences that the oxidation state of Ni and Mn ions in bulk La2NiMnO6 has the Ni2+ and Mn4+ configuration and the decrease of average A-site valence caused by Ca doping is compensated by the increase of Ni valence, while Mn keeps unchanged. As the Ca-doping content increases, the peak shapes of Raman spectroscopy exhibit an increase in the linewidth and decrease in the intensity, respectively, which reveals the increase the disorder of Ni–O bond length and the decrease of Ni/Mn ordering degree. Both the paramagnetic–ferromagnetic transition temperature and the saturation magnetization exhibit decrease with the increase of Ca-doping content, which are attributed to the decrease of Ni–O–Mn bond angle and the increase of Ni/Mn antisite disorder, respectively. All those behaviors can be ascribed to the valence state change of Ni ion caused by hole doping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号