首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The electrical conductivity, thermal conductivity and its relationship with the microstructure in Mg–5Sn alloy aged at 513 K for different aging times were investigated systematically in this paper. The results show that the electrical conductivity and thermal conductivity obviously increase with the increasing aging time, and its values increase from 10.25 × 106 S·m 1 to 13.7 × 106 S·m 1, 87.5 W·m 1·K 1 to 122 W·m 1·K 1 after aging treatment for 120 h, respectively. Meanwhile, it is found that there exist quite different relationships between unit cell volume and thermal conductivity in early and later aging stages.  相似文献   

2.
M. S. Omar  H. T. Taha 《Sadhana》2010,35(2):177-193
The effects of nanoscale size dependent parameters on lattice thermal conductivity are calculated using the Debye-Callaway model including transverse and longitudinal modes explicitly for Si nanowire with diameters of 115, 56, 37 and 22 nm. A direct method is used to calculate the group velocity for different size nanowire from their related calculated melting point. For all diameters considered, the effects of surface roughness, defects and transverse and longitudinal Gruneisen parameters are successfully used to correlate the calculated values of lattice thermal conductivity to that of the reported experimental curve. The obtained fitting value for mean Gruneisen parameter has a systematic dependence on all Si nanowire diameters changing from 0·791 for 115 nm diameter to 1·515 for the 22 nm nanowire diameter. The dependence also gave a suggested surface thickness of about 5–6 nm. The other two parameters were found to have partially systematic dependence for diameters 115, 56, and 37 nm for defects and 56, 37 and 22 nm for the roughness. When the diameters go down from 115 to 22 nm, the concentration of dislocation increased from 1·16 × 1019cm−3 to 5·20 × 1019cm−3 while the surface roughness P found to increase from 0·475 to 0·130 and the rms height deviation from the surface changes by about 1·66 in this range of diameter. The diameter dependence also indicates a strong control of surface effect in surface to bulk ratio for the 22 nm wire diameter.  相似文献   

3.
In this study, object oriented finite element method (OOF) has been utilized to compute the thermal conductivity of plasma sprayed Al-12 wt.% Si containing 10 wt.% multiwall carbon nanotubes (CNTs). The computations have been made at micro- and macro-length scales which highlight the effect of CNT dispersion on thermal conductivity. Experimentally measured values at 50 °C indicate that CNT addition reduced the thermal conductivity of Al–Si matrix from 73 W m−1 K−1 to 25.4 W m−1 K−1 which is attributed to the presence of CNT clusters. OOF calculations at micro-length scale predicted an 81% increase in the conductivity of Al–Si matrix due to presence of well dispersed CNTs inside the matrix. At larger lengths scale, the decrease in the overall conductivity is related to the extremely low conductivity of CNT clusters. Thermal conductivity of CNT clusters could be up to three orders of magnitude lower than individual CNTs. OOF computed values match well with experimental results. OOF compute thermal conductivity of Al–CNT composite is also compared with theoretical two-phase models for CNT-composites at different length scales.  相似文献   

4.
《材料科学技术学报》2019,35(10):2404-2408
Transition metal diborides based ultrahigh temperature ceramics (UHTCs) are characterized by high melting point, high strength and hardness, and high electrical and thermal conductivity. The high thermal conductivity arises from both electronic and phonon contributions. Thus electronic and phonon contributions must be controlled simultaneously in reducing the thermal conductivity of transition metal diborides. In high entropy (HE) materials, both electrons and phonons are scattered such that the thermal conductivity can significantly be reduced, which opens a new window to design novel insulating materials. Inspired by the high entropy effect, porous HE (Zr0.2Hf0.2Nb0.2Ta0.2Ti0.2)B2 is designed in this work as a new thermal insulting ultrahigh temperature material and is synthesized by an in-situ thermal borocarbon reduction/partial sintering process. The porous HE (Zr0.2Hf0.2Nb0.2Ta0.2Ti0.2)B2 possesses high porosity of 75.67%, pore size of 0.3–1.2 μm, homogeneous microstructure with small grain size of 400–800 nm, which results in low room temperature thermal diffusivity and thermal conductivity of 0.74 mm2 s−1 and 0.51 W m−1 K−1, respectively. In addition, it exhibits high compressive strength of 3.93 MPa. The combination of these properties indicates that exploring porous high entropy ceramics such as porous HE (Zr0.2Hf0.2Nb0.2Ta0.2Ti0.2)B2 is a novel strategy in making UHTCs thermal insulating.  相似文献   

5.
Low thermal conductivity is one of the key requirements for thermal barrier coating materials. From the consideration of crystal structure and ion radius, La3 + Doped Yb2Sn2O7 ceramics with pyrochlore crystal structures were synthesized by sol–gel method as candidates of thermal barrier materials in aero-engines. As La3 + and Yb3 + ions have the largest radius difference in lanthanoid group, La3 + ions were expected to produce significant disorders by replacing Yb3 + ions in cation layers of Yb2Sn2O7. Both experimental and computational phase analyses were carried out, and good agreement had been obtained. The lattice constants of solid solution (LaxYb1  x)2Sn2O7 (x = 0.3, 0.5, 0.7) increased linearly when the content of La3 + was increased. The thermal properties (thermal conductivity and coefficients of thermal expansion) of the synthesized materials had been compared with traditional 8 wt.% yttria stabilized zirconia (8YSZ) and La2Zr2O7 (LZ). It was found that La3 + Doped Yb2Sn2O7 exhibited lower thermal conductivities than un-doped stannates. Amongst all compositions studied, (La0.5Yb0.5)2Sn2O7 exhibited the lowest thermal conductivity (0.851 W·m 1·K 1 at room temperature), which was much lower than that of 8YSZ (1.353 W·m 1·K 1), and possessed a high coefficient of thermal expansion (CTE), 13.530 × 10 6 K 1 at 950 °C.  相似文献   

6.
Silt dredged from reservoirs can be hydrated and sintered into lightweight aggregate for producing lightweight aggregate concrete (LWAC). The densified mixture design algorithm (DMDA) was employed to manufacture LWAC using 150 kg/m3 of water at different water-to-binder ratios (w/b = 0.28, 0.32 and 0.4) using lightweight aggregates of different particle densities (800, 1100 and 1500 kg/m3). The engineering properties of the LWAC thus obtained were examined. Results show that the fresh concrete meets the design requirement of having slump of 250 ± 20 mm and slump flow of 600 ± 100 mm. With respect to hardened properties, the compressive strength, ultrasonic pulse velocity and thermal conductivity were found to decrease with increasing w/b ratio but increase with increasing aggregate density. Moreover, higher aggregate density also resulted in less shrinkage. The surface resistivity exceeding 20 kΩ-cm also matched the design objective. The experimental results prove that LWAC made from dredged silt can help enhance durability of concrete.  相似文献   

7.
Polymeric composites with high thermal conductivity, high dielectric permittivity but low dissipation factor have wide important applications in electronic and electrical industry. In this study, three phases composites consisting of poly(vinylidene fluoride) (PVDF), Al nanoparticles and β-silicon carbide whiskers (β-SiCw) were prepared. The thermal conductivity, morphological and dielectric properties of the composites were investigated. The results indicate that the addition of 12 vol% β-SiCw not only improves the thermal conductivity of Al/PVDF from 1.57 to 2.1 W/m K, but also remarkably increases the dielectric constant from 46 to 330 at 100 Hz, whereas the dielectric loss of the composites still remain at relatively low levels similar to that of Al/PVDF at a wider frequency range from 10−1 Hz to 107 Hz. With further increasing the β-SiCw loading to 20 vol%, the thermal conductivity and dielectric constant of the composites continue to increase, whereas both the dielectric loss and conductivity also rise rapidly.  相似文献   

8.
Cu matrix composites reinforced with 10 vol.% Ag-coated β-Si3N4 whiskers (ASCMMCs) were prepared by powder metallurgy method. With the aim of improving the thermal conductivity of the composites, a quite thin Ag layer was deposited on the surface of β-Si3N4 whiskers. The results indicated that thermal conductivity of ASCMMCs with 0.30 vol.% Ag (0.30ASCMMCs) reached up to 273 W m−1 K−1 at 25 °C, which was 98 W m−1 K−1 higher than that of Cu matrix composites reinforced with uncoated β-Si3N4 whiskers (USCMMCs). The Ag coating could promote the densification of composites, reduce the aggregation of β-Si3N4 whiskers and enhance the Cu/Si3N4 interfacial bonding, therefore it could efficiently enhance the thermal conductivity of Cu matrix composites reinforced with β-Si3N4 whiskers (SCMMCs).  相似文献   

9.
AlN powders doped with Y2O3 (5 wt.%) were compacted by employing powder injection molding (PIM) technique. The binder consisted of paraffin wax (PW, 60 wt.%), polypropylene (PP, 35 wt.%) and stearic acid (SA, 5 wt.%). The feedstock was prepared with a solid loading of 62 vol.%. The binder was removed through debinding process in two steps, solvent debinding followed by thermal debinding. At last, the debound samples were sintered in flowing nitrogen gas at atmospheric pressure. The result reveals that thermal debinding atmosphere has significant effect on the thermal conductivity and structure of AlN ceramics. The thermal conductivity of injection molded AlN ceramics thermal debound in flowing nitrogen gas is 231 W m?1 K?1.  相似文献   

10.
Tetrapod-shaped zinc oxide (T-ZnO) whiskers and boron nitride (BN) flakes were employed to improve the thermal conductivity of phenolic formaldehyde resin (PF). A striking synergistic effect on thermal conductivity of PF was achieved. The in-plane thermal conductivity of the PF composite is as high as 1.96 W m−1 K−1 with 30 wt.% BN and 30 wt.% T-ZnO, which is 6.8 times higher than that of neat PF, while its electrical insulation is maintained. With 30 wt.% BN and 30 wt.% T-ZnO, the flexural strength of the composite is 312.9% higher than that of neat PF, and 56.2% higher that of the PF composite with 60 wt.% BN. The elongation at break is also improved by 51.8% in comparison with that of the composite with 60 wt.% BN. Such a synergistic effect results from the bridging of T-ZnO whiskers between BN flakes facilitating the formation of effective thermal conductance network within PF matrix.  相似文献   

11.
This paper systematically investigates the effect of laser shock peening without coating parameters on the microstructural evolution, and dislocation configurations induced by ultra-high plastic strains and strain rates. Based on an analysis of optical microscopy, polarized light microscopy, transmission electron microscopy observations and residual stress analysis, the significant influence of laser shock peening parameters due to the effect of plasma generation and shock wave propagation has been confirmed. Although the optical microscopy results revealed no significant microstructural changes after laser shock peening, i.e. no heat effect zone and differences in the distribution of second-phase particles, expressive influence of laser treatment parameters on the laser shock induced craters was confirmed. Moreover, polarized light microscopy results have confirmed the existence of well-defined longish grains up to 455 μm in length in the centre of the plate due to the rolling effect, and randomly oriented smaller grains (20 μm × 50 μm) in the surface due to the static recrystallization effect. Laser shock peening is reflected in an exceptional increase in dislocation density with various configurations, i.e. dislocation lines, dislocation cells, dislocation tangles, and the formation of dense dislocation walls. More importantly, the microstructure is considerably refined due to the effect of strain deformations induced by laser shock peening process. The results have confirmed that dense dislocation structures during ultra-high plastic deformation with the addition of shear bands producing ultra-fine (60–200 nm) and nano-grains (20–50 nm). Furthermore, dislocation density was increased by a factor of 2.5 compared to the untreated material (29 × 1013 m 2 vs. 12 × 1013 m 2).  相似文献   

12.
Cu/diamond composites were fabricated by spark plasma sintering (SPS) after the surface pretreatment of the diamond powders, in which the diamond particles were mixed with copper powder and tungsten powder (carbide forming element W). The effects of the pretreatment temperature and the diamond particle size on the thermal conductivity of diamond/copper composites were investigated. It was found that when 300 μm diamond particles and Cu–5 wt.% W were mixed and preheated at 1313 K, the composites has a relatively higher density and its thermal conductivity approaches 672 W (m K)−1.  相似文献   

13.
The polystyrene (PS) macromolecular chains were grafted on the surface of graphene layers by reversible addition-fragmentation chain transfer (RAFT) polymerization. In this procedure, a RAFT agent, 4-Cyano-4-[(dodecylsulfanylthiocarbonyl) sulfanyl] pentanoic acid, was used to functionalize the thermal reduced graphene oxide (TRGO) to obtain the precursor (TRGO-RAFT). It can be calculated that the grafting density of PS/graphene (PRG) composites was about 0.18 chains per 100 carbons. Successful in-plain attachment of RAFT agent to TRGO and PS chain to TRGO-RAFT was shown an influence on the thermal property of the PRG composites. The thermal conductivity (λ) improved from 0.150 W m−1 K−1 of neat PS to 0.250 W m−1 K−1 of PRG composites with 10 wt% graphene sheets loading. The thermal property of PRG composites increased due to the homogeneous dispersion and ordered arrangement of graphene sheets in PS matrix and the formation of PRG composites.  相似文献   

14.
Copper matrix composites reinforced with about 90 vol.% of diamond particles, with the addition of zirconium to copper matrix, were prepared by a high temperature–high pressure method. The Zr content was varied from 0 to 2.0 wt.% to investigate the effect on interfacial microstructure and thermal conductivity of the Cu–Zr/diamond composites. The highest thermal conductivity of 677 W m−1 K−1 was achieved for the composite with 1.0 wt.% Zr addition, which is 64% higher than that of the composite without Zr addition. This improvement is attributed to the formation of ZrC at the interface between copper and diamond. The variation of thermal conductivity of the composites was correlated to the evolution of interfacial microstructure with increasing Zr content.  相似文献   

15.
Ultralow density (0.052 g cm?3) carbon aerogels (CAs) were prepared for ultrahigh temperature thermal insulation, and their thermal conductivities were determined by laser flash method. The CAs have a total thermal conductivity as low as 0.601 W m?1 K?1, which is only one third of the value for closed-pore carbon foam (CF) with a density of 0.054 g cm?3, at 2000 °C under 0.15 MPa argon. The solid, gaseous, and radiative conductivities of the CA are all much lower than those of the CF, because of the special nanoporous and pearl-necklace nanoparticle structures of the CA. The ultralow density CA clearly demonstrates its great potentials as thermal insulations for extreme applications.  相似文献   

16.
A novel thermally conductive plastic composite was prepared from a mixture of silicon nitride (Si3N4) filler particles and an ultrahigh molecular weight polyethylene–linear low density polyethylene blend. The effects of Si3N4 particle sizes, concentration, and dispersion on the thermal conductivity and relevant dielectric properties were investigated. With proper fabrication the Si3N4 particles could form a continuously connected dispersion that acted as the dominant thermally conductive pathway through the plastic matrix. By adding 0–20% Si3N4 filler particles, the composite thermal conductivity was increased from 0.2 to ~1.0 W m?1 K?1. Also, the composite thermal conductivity was further enhanced to 1.8 W m?1 K?1 by decreasing the Si3N4 particle sizes from 35, 3 and 0.2 μm, and using coupling agent, for the composites with higher filler content. Alumina short fibers were then added to improve the overall composite toughness and strength. Optimum thermal, dielectric and mechanical properties were obtained for a fiber-reinforced polyethylene composite with 20% total alumina–Si3N4 (0.2 μm size) filler particles.  相似文献   

17.
Diamond dispersed copper matrix (Cu/D) composite films with strong interfacial bonding were produced by tape casting and hot pressing without carbide forming additives. The tape casting process offers an original solution to obtain laminated materials with accurate thickness control, smooth surface finish, material net-shaping, scalability, and low cost. This study presents an innovative process of copper submicronic particles deposition onto diamond reinforcements prior to densification by hot pressing. Copper particles act as chemical bonding agents between the copper matrix and the diamond reinforcements during hot pressing, thus offering an alternative solution to traditionnal carbide-forming materials in order to get efficient interfacial bonding and heat-transfer in Cu/D composites. It allows high thermal performances with low content of diamond, thus enhancing the cost-effectiveness of the materials. Microstructural study of composites by scanning electron microscopy (SEM) was correlated with thermal conductivity and thermal expansion coefficient measurements. The as-fabricated films exhibit a thermal conductivity of 455 W m?1 K?1 associated to a coefficient of thermal expansion of 12 × 10?6 °C?1 and a density of 6.6 g cm?3 with a diamond volume fraction of 40%, which represents a strong enhancement relative to pure copper properties (λCu = 400 W m?1 K?1, αCu = 17 × 10?6 °C?1, ρCu = 8.95 g cm?3). The as-fabricated composite films might be useful as heat-spreading layers for thermal management of power electronic modules.  相似文献   

18.
A novel thermal barrier coating material, lanthanum zirconium oxide (La2Zr2O7) has been synthesized through the composite-hydroxide-mediated method at low temperature. The phase structures, morphology, thermal stability and thermal conductivity of the as-synthesized La2Zr2O7 were investigated systematically. The X-ray diffraction (XRD) patterns revealed a single phase with cubic pyrochlore structure for La2Zr2O7 after treated at 1300 °C for 100 h. The transmission electron microscope (TEM) and scanning electron microscope (SEM) analyses showed that the sample was made up of sphere-like nanoparticles with the size between 50 and 100 nm. Furthermore, the thermal analysis result demonstrated the La2Zr2O7 sample had high thermal stability even at 1300 °C. As the temperature increased to 1200 °C, the thermal conductivity value could be as low as 1.75 W m?1 K?1. Due to the high-temperature stability and lower thermal conductivity, the La2Zr2O7 material is expected to be a promising candidate for the use of thermal barrier coatings.  相似文献   

19.
The present study presents a methodology to design ultra-lightweight concrete that could be potentially applied in monolithic concrete structures, performing as both load bearing element and thermal insulator. A particle grading model is employed to secure a densely packed matrix, composed of a binder and lightweight aggregates produced from recycled glass.The developed ultra-lightweight concrete, with a dry density of about 650–700 kg/m3, shows excellent thermal properties, with a thermal conductivity of about 0.12 W/(m K); and moderate mechanical properties, with a 28-day compressive strength of about 10–12 N/mm2. Furthermore, the developed concrete exhibits excellent resistance against water penetration.  相似文献   

20.
Laser shock peening (LSP) is an innovative surface treatment technique applied to improve the mechanical properties and surface microstructures of metallic components. This paper is concerned with prediction of the microstructural evolution of metallic components subjected to single or multiple LSP impacts. A numerical framework is developed to model the evolution of dislocation density and dislocation cell size using a dislocation density-based material model. It is shown that the developed model captures the essential features of the material mechanical behaviors and predicts that the total dislocation density reaches the order of 1014 m?2 and a minimum dislocation cell size is below 250 nm for LSP of monocrystalline coppers using the laser energy density on the order of 500 GW/cm2. It is further shown that the model is cable of predicting the material strengthening mechanism in terms of residual stress and microhardness of the LY2 aluminum alloy due to grain refinement in a LSP process with less laser energy densities on the order of several GW/cm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号