首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
《Vacuum》2008,82(11-12):1439-1442
W–S–C films were deposited by magnetron sputtering in an Ar atmosphere with a Ti interlayer. A carbon target with several pellets of WS2 incrusted in the zone of the preferential erosion was used. The number of pellets was changed to modify the carbon content in the films, which varied from 29 up to 70 at%. Doping W–S films with carbon led to a substantial increase of the hardness in the range 4–10 GPa; the maximum of hardness was obtained for coatings with the carbon content of 40 at%. X-ray diffraction (XRD) patterns showed that there was a loss of crystallinity with the increase of the carbon content in the film.The coatings were tested by pin-on-disk from room temperature (RT) up to 400 °C. At RT, the friction coefficient was in the range 0.2–0.30. At temperatures higher than 100 °C, the friction is below 0.05 for all compositions. The tribological behavior of the coatings with increasing temperatures depended on the films carbon content. For low-carbon content up to 40%, the wear rate was almost independent of the temperature up to 300 °C, while it increased dramatically in the case of the coatings with high-carbon content. In general, the limiting temperature for W–S–C coatings is 400 °C.  相似文献   

2.
The hydrogen-free diamond-like carbon (DLC) films with transition metal (TM = Cr, Ag, Ti, Ni) interlayer (bilayer and multilayer) were deposited on to stainless steel and silicon substrates using pulsed laser deposition technique. Secondary ion mass spectroscopy (SIMS) confirmed that the films were hydrogen free. Incorporation of chromium inter layer reduced the stress value by about 3 GPa as determined by micro Raman spectroscopy. Incorporation of the TM inter layer enhanced the photoluminescence (PL) intensity as compared to the monolithic DLC films. The optical band gap determined by spectroscopic ellipsometry for DLC/TM films was found to be in the range of 1.56–1.67 eV.  相似文献   

3.
Multi-element (AlCrTaTiZr)N films were deposited on cemented carbide and M2 steel substrates by reactive RF magnetron sputtering. Prior to nitride film deposition, an interlayer between the film and the substrate was introduced to improve adhesion property. The influence of interlayer materials (Ti, Cr, and AlCrTaTiZr alloy) and interlayer thickness (0–400 nm) on the adhesion and tribological properties of films was investigated. In this study, the nitride film deposited at RN = 20% exhibited the highest hardness (35.2 GPa) and the lowest residual compressive stress (? 1.52 GPa), and was prepared as the top layer for further testing. The interlayer materials can effectively improved the film adhesion onto the cemented carbide substrates, and the adhesive failure was not observed even under the normal load of 100 N. For M2 steel substrates, only the Cr interlayer can slightly improve the film adhesion, and the cohesive and adhesive failure can be found at relatively lower applied load. The optimal interlayer thickness was 100–200 nm for the 1 µm-thick (AlCrTaTiZr)N film and can be related to the stress evolution. The friction coefficient and wear rate for the (AlCrTaTiZr)N film were 0.82 and 4.9 × 10? 6 mm3/Nm, respectively, and almost kept constant under different interlayer materials and thickness. The worn-through event of the nitride film during tribological test occurred easily owing to its poor adhesion behavior, and can be improved by interlayer additions.  相似文献   

4.
Lead-free ferroelectric (K, Na)NbO3 (KNN) thin films (~200 nm thickness) were prepared using a modified sol–gel method by mixing K and Na acetates with the Nb–tartarate complex, deposited by spin-coating method on Pt/Al2O3 and Pt/SiO2/Si substrates and sintered at 650 °C. Pure perovskite phase of K0.65Na0.35NbO3 in film on silicon were revealed, while film on alumina contained also small amount of secondary pyrochlore Na2Nb8O21 phase. Homogenous microstructure of film on Si substrate was smoother with the lower roughness (~7.4 nm) and contained spherical (~50 nm) particles. The mechanical properties of films were characterized by nanoindentation. The modulus and hardness of KNN films were calculated from their composite values of film/substrate systems using discontinuous and modified Bhattacharya model, respectively. The KNN film modulus was higher on alumina substrate (91 GPa) in comparison with silicon substrate (71 GPa) and values of film hardness were the same (4.5 GPa) on both substrates.  相似文献   

5.
The deposition of innovative glass–ceramic composition (i.e. RKKP) coatings by Pulsed Lased Deposition (PLD) technique is reported. RKKP was synthesised following two methodologies: melt-processing and sol–gel, the latter being particularly suitable to tailor the compositional range. The PLD advantage with respect to other deposition techniques is the congruent transfer of the target composition to the coating. The physico-chemical properties of films were investigated by Scanning Electron and Atomic Force Microscopies, Fourier Transform Infrared Spectroscopy, Angular and Energy Dispersive X-ray Diffraction, and Vickers microhardness. The deposition performed at 12 J/cm2 and 500 °C allows to prepare crystalline films with the composition that replicates rather well that of the initial targets. The 0.6 μm thin melt-processing RKKP films, possessing the hardness of 25 GPa, and the 4.3 μm thick sol–gel films with the hardness of 17 GPa were obtained.  相似文献   

6.
This paper presents the results of a laser-based combinatorial investigation of the Ti–Mo system, aiming at finding alloys with promising properties for orthopedic applications. Variable powder feed rate laser cladding was applied to synthesize Ti–xMo alloys with composition continuously varying in the range of 4–19 wt.% Mo. Screening was performed on the basis of the alloys' mechanical properties, in particular hardness and Young's modulus, measured by microindentation tests. Microstructural analysis showed that alloys with Mo content between 4 and 8 wt.% are composed of acicular martensite and retained β-phase, the proportion of the later phase increasing with increasing Mo content. Alloys with Mo content of 10 wt.% and higher consist entirely of β phase. All the alloys present a Mo segregation pattern indicating that solidification occurred with a cellular solid–liquid interface. Though β-phase alloys present lower values of Young's modulus and hardness than α′- or α″- containing alloys, minimum values of Young's modulus (75 GPa) and hardness (240 VHN) were achieved for the Ti–13 wt.% Mo alloy.  相似文献   

7.
《Thin solid films》2006,494(1-2):92-97
Nanocrystalline diamond/amorphous carbon (NCD/a-C) composite thin films have been deposited by microwave plasma chemical vapour deposition from methane-rich CH4/N2 mixtures. The films have been thoroughly characterized with respect to basic properties such as growth rates, morphology and structure, composition, crystallinity, and bonding environment. They consist of diamond nanocrystals with diameters of 3–5 nm, which are embedded in an amorphous carbon matrix. Further studies are aimed at application relevant properties. I/V and Hall measurements showed that the films are p-type conductive with a resistitivity of 0.14 Ω cm, a carrier concentration of 1.9 × 1017 cm 3, and a carrier mobility of 250 cm2/Vs. Reflection, scattering and ellipsometric measurements revealed a refractive index of 1.95–2.1 in the visible region and an rather high extinction coefficient of about 0.14 at 400 nm. The films possess a hardness of ca. 40 GPa and a Young's modulus of ca. 390 GPa. Nano tribo test and nano scratch tests proved a low friction coefficient, and a strong protective effect and good adhesion on silicon substrates. First biomedical tests showed that the films are not cytotoxic but bioinert. Finally, the deposition of multilayers nano/polycrystalline diamond with improved properties is demonstrated.  相似文献   

8.
《Materials Research Bulletin》2006,41(8):1430-1436
In this paper the influence of the layer's microstructure on the hardness enhancement in multilayer nanocrystalline films and the oxidation resistance are studied. The TiN/MoxC multilayer films at different modulation period, and MoxC and TiN monolayer films were deposited on the (0 0 1) silicon wafers and molybdenum sheets by rf and dc magnetron sputtering. The monolayer TiN films with a thickness of about 2 μm are of pure face-center cubic TiN phase, while the monolayer MoxC films consist of two phases, one of which is body-center cubic Mo and the other is hexagonal Mo2C as determined by XRD. The coarse columnar grains of about 200 nm in the monolayer TiN films become much smaller or disappear in the multilayer films. The hardness enhancement of the multilayer films takes place at the modulation period of 320 nm, which can reach to 26 GPa and is much higher than the values of MoxC and TiN monolayer films. This enhancement in hardness can be explained as the decrease in the size and/or disappearance of columnar grains in the TiN layer. The Young's modulus in the temperature range from 100 to 400 °C increases with decreasing modulation period. It is found that about 100 nm thick TiN films can increase largely the oxidation resistance of MoxC films.  相似文献   

9.
Ternary TiCrN and nanocomposite TiCr(C,N)/amorphous carbon (a-C) coatings with different carbon contents (0-26.6 at.%) were synthesized by cathodic arc evaporation with plasma enhanced duct equipment. The structural, chemical, and mechanical properties of the deposited films were studied by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), and nanoindentation measurement. The atomic content ratios of carbon/(Ti + Cr) and carbon/nitrogen increased with increasing C2H2 flow rate. A nanocomposite structure of coexisting metastable hard TiCr(C,N) crystallites and amorphous carbon phases was found in the TiCr(C,N)/a-C coatings, those possessed smaller crystallite sizes than the ternary TiCrN film. XPS analyses revealed the concentration of a-C increased with increasing carbon content from 8.9 at.% to 26.6 at.%. Exceeding the metastable solubility range of carbon within the TiCrN lattice, the carbon formed a-C phase in the deposited coatings. The nanocomposite TiCr(C,N)/a-C coatings exhibited higher hardness value of 29-31 GPa than the deposited TiCrN coating (26 ± 1 GPa). It has been found that the structural and mechanical properties of the films were correlated with the carbon content in the TiCr(C,N)/a-C coatings.  相似文献   

10.
Nanocomposite coatings are novel, important systems composed of two or more nanocrystalline, or nanocrystalline and amorphous, phases. Such coatings offer a possibility of tailoring the coating microstructure and achieving new improved properties of coated materials. In this work a duplex surface treatment, consisting of an oxygen diffusion treatment and deposition of low friction nanocomposite nc-MeC/a-C (Me = transition metal, Ti, W or Cr) coatings, was applied for improvement of the Ti-6Al-4V alloy properties. The coatings composed of nanocrystallites of transition metal carbides (TiC or CrxCy or WC) embedded in hydrogen-free amorphous carbon (a-C) matrix were deposited onto the surface of an oxygen hardened Ti-6Al-4 V alloy substrate by means of a simple DC magnetron sputtering. A nano/microstructure of the substrate material and coatings has been examined by scanning- and transmission electron microscopy complemented with the results of X-ray diffraction analyses.It was found that the nanocomposite coatings are composed of different carbide nanocrystals (with sizes of a few nanometres) embedded in an amorphous carbon matrix. The results of qualitative and quantitative analyses of the nanocrystalline phase in the coatings with use of high-resolution transmission electron microscopy combined with image analysis are given in the paper.An effect of the nano/microstructure parameters of the coated alloy onto its micro-mechanical (nanohardness and Young's modulus) and tribological properties (wear resistance and friction coefficient) is discussed in the paper.  相似文献   

11.
The results of doping influence on thermal stability of the SnO2 film morphology are presented in this article. The SnO2 films doped by Fe, Cu, Ni, Co (16 at.%) were deposited by spray pyrolysis from 0.2 M SnCl4–water solution at Tpyr 350–450 °C. The annealing at 850–1030 °C was carried out in the atmosphere of the air. The change of such parameters as film morphology, the grain size, texture and the intensity of X-ray diffraction (XRD) peaks have been controlled. For structural analysis of tested films we have been using X-ray diffraction, Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM) techniques. It was established that the doping does not improve thermal stability of both film morphology and the grain size. It was made a conclusion that the increased contents of the fine dispersion phase of tin oxide in the doped metal oxide films, and the coalescence of this phase during thermal treatment are the main factors, responsible for observed changes in the morphology of the doped SnO2 films.  相似文献   

12.
The influence of oxygen content on the properties of cathodic arc-deposited AlCr(OxN1?x) coatings has been studied. All samples were prepared in a nitrogen-rich mixture of N2 and O2 at 550 °C using lateral rotating arc cathodes (LARC) technology together with a pulsed bias voltage. The obtained coatings were characterized by various techniques including XRD, EPMA, TEM, pin-on-disk wear tests and nanoindentation. The results obtained allow to classify the coatings into three groups with respect to their microstructure, mechanical properties and oxygen content, x. For the first group of samples with x  0.6, single-phase films of (Al,Cr)OxN1-x with fcc lattice were obtained, with well-developed columnar structure and a hardness of 30 to 33 GPa. In the second group, a diffuse columnar structure was observed while the fcc lattice was still present despite the large proportion of oxygen, 0.6 < x  0.97, and the observed hardness decreased to 25 GPa. No amorphous phase was detected in this group as confirmed by TEM. The simulation of XRD patterns of nitride lattices with oxygen incorporation allowed to suggest the formation of cation vacancies in the structure of the investigated oxynitride coatings. The third group is formed by coatings with x > 0.97, where a well-crystalline α-(Al,Cr)2O3 corundum phase was observed and the hardness increased again to 28 GPa. Our results indicate that the second group of coatings is metastable and after heat treatment transforms to a composite of cubic oxynitride and corundum oxide. Both friction and wear of samples from the entire investigated compositional range were studied at room temperature and 600 °C. The low wear rates observed for the oxynitride coatings underline their potential for use in turning and milling applications.  相似文献   

13.
In this work, the charge carrier density of ZnO nanoparticle films was modified after deposition and annealing by an oxygen plasma treatment. The respective films were utilized as active layers in thin film transistors. For a discussion of the plasma–surface interaction on the molecular level, the electrical behavior of the layers was investigated which in general is highly sensitive to low level variations in defect or doping densities. A treatment with remote oxygen plasma at 400 W for 10 s led to a shift of the turn-on voltage from ?12 to 4 V and a reduction of the off-current by more than two orders of magnitude. A model for the influence of oxygen species adsorbed to ZnO nanoparticle surfaces on electrical characteristics of ZnO nanoparticle thin film transistors is introduced.  相似文献   

14.
TiO2 and (NdyTi1  y)Ox thin films were deposited by reactive magnetron sputtering process from mosaic Ti–Nd targets and characterised by X-ray diffraction (XRD), Raman optical spectroscopy and nanoindentation technique. XRD measurements revealed that as-prepared titanium dioxide and TiO2 thin films with 4 and 7 at.% of Nd had nanocrystalline rutile structure, while coatings with larger amount of Nd were amorphous. Raman spectroscopy investigations showed that the increase of the neodymium concentration caused amorphisation of the coatings and hindered their crystal growth. All as-prepared coatings were transparent in the visible wavelength range with a transmittance of approximately 80%. The refractive index and extinction coefficient of the thin films gradually decreased with the increase of the neodymium concentration. Micro-mechanical properties, i.e. hardness and elastic modulus, were determined using traditional load-controlled nanoindentation testing and continuous stiffness measurements. The highest hardness and elastic modulus values were obtained for thin films with 7 at.% of Nd and were approximately 14.8 GPa and 166.3 GPa, respectively.  相似文献   

15.
The optical properties and structure of a-C:H films were modified by addition of nitrogen into the CH4/H2 deposition mixture. Three films prepared in capacitively coupled rf discharge were compared: (a) hydrogenated diamond like carbon film with hydrogen content of 34% and indentation hardness of 21.7 GPa, (b) hard a-C:H:N film with nitrogen content of 13% and indentation hardness of 18.5 GPa and (c) soft a-C:H:N film with nitrogen content of 10% and indentation hardness of 6.7 GPa. It is shown how the parametrized density of states model describing dielectric response of electronic interband transitions can be applied to modified a-C:H:N and how it can be combined with correct treatment of transmittance measured in infrared range using additional Gaussian peaks in joint density of phonon states. This analysis resulted in determination of film dielectric function in wide spectral range (0.045-30 eV) and provided also information about the density of states of valence and conduction bands and lattice vibrations.  相似文献   

16.
Fine-grained tungsten (W) heavy alloy containing molybdenum (Mo) with W particle sizes of less than 5 μm were fabricated by spark plasma sintering (SPS) pre-milling W–2Mo–7Ni–3Fe powder at a lower temperature of 1000–1250 °C. Phase, microstructure and mechanical properties evolution of W–Mo–Ni–Fe alloy during spark plasma sintering were studied in detail. As increasing sintering temperature, the hardness of the alloy decreased rapidly. However, bending strength of the alloy demonstrated a fall–rise–fall trend, and the maximum strength was obtained at 1150 °C. The W–2Mo–7Ni–3Fe alloy microstructure was composed of white W-grain, gray W-rich structure, black γ-(Ni, Fe, W, Mo) binding phase, and deep-gray W-rich structure. The intergranular fracture along the W/W grain boundary is the main fracture modes of W–2Mo–7Ni–3Fe alloy.  相似文献   

17.
Amorphous hydrogenated chlorinated carbon (a-C:H:Cl) films were produced by the plasma polymerization of chloroform–acetylene–argon mixtures in a radiofrequency plasma enhanced chemical vapor deposition system. The main parameter of interest was the proportion of chloroform in the feed, RC, which was varied from 0 to 80%. Deposition rates of 80 nm min? 1 were typical for the chlorinated films. Infrared reflection–absorption spectroscopy revealed the presence of C–Cl groups in all the films produced with chloroform in the feed. X-ray photoelectron spectroscopy confirmed this finding, and revealed a saturation of the chlorine content at ~ 47 at.% for RC  40%. The refractive index and optical gap, E04, of the films were roughly in the 1.6 to 1.7, and the 2.8 to 3.7 eV range. These values were calculated from transmission ultraviolet–visible-near infrared spectra. Chlorination leads to an increase in the water surface contact angle from ~ 40° to ~ 77°.  相似文献   

18.
In this work, we have presented a new route to produce pure ZnO and composite ZnO-CuO thin films. In the process we have started with pure ZnO thin films and ended up with CuO by doping Cu in various percentages, ranging from 0% to 100%. We have managed to attain crystal phases in all doping concentrations. All the produced thin films have been crystallized at the annealing temperatures of 600 and 700 °C for 6 h. The X-ray diffraction (XRD) spectra have been performed to see the formation of crystal phases of all pure ZnO and composite ZnO-CuO thin films. These give insight that the two crystal phases related to ZnO and CuO stayed together within the thin film matrices, which were produced in different doping concentrations, i.e. nZnO + mCuO (0  n, m  100%). The scanning electron microscopy (SEM) micrographs and UV–vis absorption spectra have also been taken to elucidate the structure and composition of the all films.  相似文献   

19.
《Vacuum》2008,82(11-12):1412-1415
Hydrogenated amorphous carbon (a-C:H) films have been grown from argon/methane gas mixtures by electron cyclotron resonance chemical vapour deposition (ECR-CVD) on silicon substrates. The effects of the application of a DC substrate bias on the structural, morphological and mechanical properties of the films have been explored by multiple analysis techniques such as infrared and micro-Raman spectroscopy, atomic force microscopy, nanoindentation and pin-on-disk wear testing. In general, within the range of applied substrate bias (i.e. from −300 up to +100 V) we have observed a strong correlation between all measured properties of the a-C:H films and the ion energy. This work shows that the properties can differ greatly and indicates a threshold energy in the order of 90 eV. For the production of hard, low-friction coatings energies above this value are required.  相似文献   

20.
Chromium doped titanium dioxide (TiO2) nanocrystal films with various doping concentration have been successfully prepared by a sol–gel dip-coating process. These films have been characterized by XRD, XPS, AFM, and UV–vis absorption spectroscopy. It is found that Cr doping can effectively reduce the transition temperature of anatase to rutile phase as well as the grain size. The absorption edges of TiO2 thin films shift towards longer wavelengths (i.e. red shifted) from 375 nm to about 800 nm with increasing Cr concentration, which greatly enhances TiO2 nano-materials on the absorption of solar spectrum. The appearance of UV–vis absorption features in the visible region can be ascribed to the newly formed energy levels such as Cr 2p level and oxygen vacancy state between the valence and the conduction bands in the TiO2 band structure. The enhancement of the photocatalytic properties is observed for Cr-doped TiO2 thin film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号