首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of Ba5(VO4)3Cl:Eu3+,K+ phosphors have been synthesized by the molten salt synthesis method. The crystalline structure, morphology, photoluminescence properties and lifetimes were characterized using X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and photoluminescence spectroscopy, respectively. XRD indicates that the Ba5(VO4)3Cl:Eu3+,K+ phosphors are synthesized successfully via molten salt method. SEM image demonstrates that the obtained phosphors have hexagonal polyhedron morphology. The photoluminescence spectra reveal that the as-prepared phosphors exhibit a bright red emission under the excitation of blue or near ultraviolet light. The concentration quenching was also investigated, and the dipole–dipole interaction is responsible for the concentration quenching of fluorescence emission of Eu3+ ions in Ba5(VO4)3Cl phosphor. The present work suggests that the Ba5(VO4)3Cl:Eu3+,K+ phosphors would be a potential candidate for light emitting devices.  相似文献   

2.
The photoluminescence, luminescence excitation, and phosphorescence spectra of SrAl2O4:Eu2+,Dy3+ and Sr4Al14O25:Eu2+,Dy3+ powder phosphors have been studied in detail at 80 and 300 K. A conceptual model is proposed for strontium-aluminate-based optical memory.  相似文献   

3.
In this work, Y2O3:Eu3+ thin film phosphors were prepared by electro-deposition method. The effect of Na+ and K+ ions on the photoluminescence properties of Y2O3:Eu3+ thin film phosphor was studied in details. It was found that the addition of Na+ and K+ ions could improve the photoluminescence intensity by 3 to 4 times. The highly improved photoluminescence intensity may be caused by different factors. The improved crystallinity and the increased optical volume caused by the flux effect of Na+ and K+ ions could be the major reasons for the enhanced photoluminescence intensity. It was also found that the average lifetime of Y2O3:Eu3+ thin film phosphors could be adjusted by the molar amount of Na+ and K+ ions.  相似文献   

4.
A series of Dy3+ - Eu3+ co-doped BaAl2Si2O8 phosphors were prepared via the conventional solid-state reaction method. Their crystal structure, luminescent characteristic and lifetime were investigated. The optimum doping concentrations of Dy3+and Eu3+ are both 0.05 for Dy3+ or Eu3+ singly doped BaAl2Si2O8. Furthermore, BaAl2Si2O8: 0.05Dy3+ and BaAl2Si2O8: 0.05Eu3+ emits yellow and red light. The emission color of BaAl2Si2O8: Dy3+, Eu3+ could be tuned from yellow to white due to the energy transfer. This energy transfer from Dy3+ to Eu3+ was confirmed and investigated by photoluminescence spectra and the decay time of energy donor Dy3+ ions. With constantly increasing Eu3+ concentration, the energy transfer efficiency from Dy3+ to Eu3+ in BaAl2Si2O8 host increased gradually and reached as high as 81%, the quantum yield was about 47.43%. BaAl2Si2O8: Dy3+, Eu3+ phosphors can be effectively excited by UV (about 348 nm) light and emit visible light from yellow to white by altering the concentration ratio of Dy3+ and Eu3+, indicating that the phosphors have potential applications as a white light-emitting phosphor for display and lighting.  相似文献   

5.
The phosphors BiPO4:Eu3+ co-doped with Dy3+ were synthesized by the conventional solid-state reaction method. XRD and scanning electron microscopy results showed that the crystalline phase of the samples BiPO4:Eu3+ transforms from high-temperature monoclinic phase to low-temperature monoclinic phase with the increase of Dy3+ concentration. The photoluminescence properties of the samples showed that the colors shifting from red–orange area to blue–green area are close to those of ideal white light by readjusting the doping concentration ratio of Eu3+ and Dy3+. The Eu3+and Dy3+ doped BiPO4 phosphors may be potential applications in white light near-UV light-emitting diodes.  相似文献   

6.
Ca3Bi(PO4)3:Eu3+ phosphors were synthesized by solid-state (SS) reaction, co-precipitation (CP) and sol–gel methods. The resulting phosphors were well characterized by X-ray diffraction, field-emission scanning electron microscopy and photoluminescence spectra. The X-ray diffraction results suggested that the pure phase of Ca3Bi(PO4)3:Eu3+ can be obtained by SS reaction and CP method. The phosphors obtained by CP method showed more homogeneous, agglomerate-free particles. The samples obtained by the CP method showed the highest emission intensity among the three methods which fired at 1,000 °C for 2 h. It was showed that the CP method was the most respected process for the preparation of Ca3Bi(PO4)3:Eu3+ phosphors.  相似文献   

7.
Eu3+- and Tb3+-activated SrGdGa3O7 phosphors were synthesized by the solid-state reaction and their luminescence properties were investigated. Sr(Gd1 − xEux)Ga3O7 and Sr(Gd1 − xTbx)Ga3O7 formed continuous solid solution in the range of x = 0-1.0. Unactivated SrGdGa3O7 exhibited a typical characteristic excitation and emission of Gd ion. The SrGdGa3O7:xEu3+ and SrGdGa3O7:xTb3+ phosphors also showed the well-known Eu3+ and Tb3+ excitation and emission. The energy transfer from Gd3+ to Eu3+ and Tb3+ were verified by photoluminescence spectra. The dependence of photoluminescence intensity on Eu3+ and Tb3+ concentration were also studied in detail and the photoluminescence (PL) intensity of SrGdGa3O7:Eu and SrGdGa3O7:Tb were compared with commercial phosphors, Y2O3:Eu and LaPO4:Ce,Tb. The luminescence decay measurements showed that the lifetimes of Eu3+ and Tb3+ were in the range of microsecond. The energy transfer from Gd3+ to Tb3+ was also observed in decay curve.  相似文献   

8.
Ba2LaV3O11:Eu3+ phosphors were firstly synthesized by the traditional solid-state reaction method at 1100 °C. Their luminescence properties were investigated by photoluminescence excitation and emission spectra. The excitation spectrum shows a broad band centered at about 275 nm in the region from 200 to 370 nm, which is attributed to an overlap of the charge transfer transitions of O2??→?V5+ and O2??→?Eu3+. The phosphors exhibit the red emissions of Eu3+ and the emission intensity ratio of 5D0?→?7F2 to 5D0?→?7F1 is dependent on the Eu3+ concentration due to an environment change about Eu3+ ions. Concentration quenching occurs at 30 mol% in the phosphors and exchange interaction is its main mechanism. Ba2LaV3O11:Eu3+ displays tunable CIE color coordinates from yellow orange to red depended on Eu3+ content, which may have a potential application for illuminating and display devices.  相似文献   

9.
Monodisperse core–shell structured SiO2@SiO2:Eu3+ microspheres were synthesized in a seeded growth way. In that way, a thin shell of Eu3+-doped silica was grown on the prepared monodisperse silica colloids. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), Fourier transform infrared spectrum (FT-IR), thermal analysis (TGA-DSC) and photoluminescence (PL) spectroscopy. The results reveal that the SiO2 spheres have been successfully coated by SiO2:Eu3+ phosphors and the obtained SiO2@SiO2:Eu3+ particles have perfect spherical shape with narrow size distribution. Additionally, the monodisperse SiO2@SiO2:Eu3+ microspheres exhibit considerably strong photoluminescence (PL) of Eu3+ under the excitation of 393 nm compared with the SiO2:Eu3+ samples with polydispersed or irregular shapes and sizes obtained by base-catalyzed Stöber method. Furthermore, the PL intensity increases with the increasing of Eu3+ concentration in SiO2 microspheres shell, and concentration quenching occurs when Eu3+ concentration exceeds 5.0 mol%.  相似文献   

10.
GdAlO3:Dy3+ Ba2+ phosphors are synthesized by citrate-based sol-gel method. Photoluminescence and positron annihilation studies are used to investigate the emission and defect chemistry of the phosphors respectively. The strong yellow (Dy3+) emission properties of phosphors are discussed for various concentrations of Dy3+ ions. Upon the addition of Ba2+ ion, an enhancement in emission intensity is observed due to the lattice distortions around Dy3+ ion. The positron studies indicate the presence of defects at crystallite boundaries, vacancy clusters and large voids in the materials. The influence of Ba2+ ion on the photoluminescence and lattice distortion around Dy3+ is also explored.  相似文献   

11.
Different concentrations of Al3+-doped YPO4:Eu0.05 powder phosphors have been synthesized by the conventional solid state reaction method and are characterized by X-ray diffraction (XRD), field emission scanning electronic microscopy (FESEM), photoluminescence excitation (PLE) and emission (PL) investigations. The influence of Al3+-doping on crystallinity, grain size and PL intensity of the YPO4:Eu phosphors has been investigated. These characteristics are found improved with increase in concentration of Al3+ ions from 0.00 to 0.10 mol and then decreased for higher concentrations. The results are discussed in comparison with earlier reported similar works.  相似文献   

12.
The synthesis and photoluminescence properties of novel Eu2+ doped Ba2ZnS3 phosphors for white light emitting diodes (LEDs) are reported. Diffuse reflection spectra of Ba2ZnS3 host and synthesized phosphors have been measured. The excitation spectra of synthesized phosphors consist of three broad bands between 250 nm and 550 nm and are consistent with the diffuse reflectance spectra. The emission spectra show the characteristic 4f65d1 → 4f7 transition of Eu2+ ion and there exists efficient energy transfer from host to Eu2+ ions when excited by 350-nm light. The dependence of emission spectra on temperature is also measured; the possible reasons applied to explain the experimental results are also discussed. The fluorescence lifetime of Eu2+ in Ba1.995ZnS3:0.005Eu2+ is measured and the values are 1.49 and 23.4 μs.  相似文献   

13.
This work first reports the synthesis and luminescence properties of rare earth Ce3+, Eu2+, Eu3+ ions doped β-Zn3BPO7 phosphors [β-Zn3BPO7:Ln (Ln = Ce3+, Eu2+, Eu3+)]. The phosphors were synthesized by a solid-state reaction at high temperature, and their luminescence properties were investigated by measuring the photoluminescence excitation and emission spectra. The f–d transitions of Ce3+ and Eu2+ ions in the host lattice are assigned and corroborated, which lead to the broad emission band in ultraviolet (UV) and visible region for Ce3+ and Eu2+ ions under UV excitation, respectively. Typical reddish orange emission from Eu3+ in the host lattice was also observed. The spectroscopic characteristics including Stokes shift, crystal field depression, electron–vibrational interaction, and charge transfer band were investigated and compared with that in other borophosphate phosphors. β-Zn3BPO7:Eu2+ and β-Zn3BPO7:Eu3+ phosphors show potential application in solid state lighting region.  相似文献   

14.
Y2O3:Eu3+ phosphors were prepared by hydrothermal method. Effect of the doping concentration of Eu3+ on the photoluminescence properties of Y2O3:Eu3+ phosphor was studied in details. It was found that the strongest emission intensity is achieved as atomic ratio of Y3+ to Eu3+ is 8. As concentration of Eu3+ exceeds the critical concentration, the emission intensity decreases dramatically due to the concentration quenching of Eu3+. Also, the effect of Li+ on the photoluminescence performance of the Y2O3:Eu3+ phosphor is studied in this work. According to the results, the doping of Li+ may greatly improve the PL performance of the Y2O3:Eu3+ phosphors due to the flux effect and improved crystallinity caused by the doping of Li+.  相似文献   

15.
YAL3(BO3)4:Eu3+ phosphors were fabricated by the sol-gel method. The structure properties were measured by x-ray diffraction (XRD) and infrared spectra (IR). Doping concentration of Eu3+ ions in YAL3(BO3)4:Eu3+ phosphors of 0, 1, 3, 4, and 5 mol% were studied. The excitation spectra and emission spectra of YAL3(BO3)4:Eu3+ phosphors were examined by fluorescent divide spectroscopy (FDS). The luminescent properties of YAL3(BO3)4:Eu3+ phosphors are discussion. The optimal doping concentration of Eu3+ ions in YAL3(BO3)4:Eu3+ phosphors was found to be approximately 3 mol%.  相似文献   

16.
The mixed solvent-thermal method has been developed for the synthesis of YVO4:Eu3+ luminescent materials in the N, N-dimethylformamide (DMF)/ de-ionized water (DIW) solution. The samples have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electronic microscope (TEM), UV/vis absorption and photoluminescence spectroscopies. The results demonstrate that we have obtained the uniform YVO4:Eu3+ cobblestone - like microcrystalline phosphors in the mixed solution of DMF and DIW, which are different to the as-obtained YVO4:Eu3+ nanoparticles in pure DIW. And the as - prepared YVO4:Eu3+ microcrystalline particles are composed of numerous nanoparticles. The assembling phenomenon of the nanoparticles is strongly affected by the pH value of the solution and the volume ratio of DMF/DIW. Under UV excitation, the samples can emit the bright red light. While, the photoluminescence (PL) intensities of YVO4:Eu3+ show some difference for samples obtained under the different reaction conditions. This is because that different microstructures of samples result in different combinative abilities between the surface and the adsorbed species so as to produce the different quenching abilities to the emission from Eu3+ ions.  相似文献   

17.
We report nano-Y2O3:Eu3+ phosphors with particle size of about 50 nm and relatively high photoluminescence (PL) intensity which is close to the standard for application. The influences of the dope amount, the surfactant and the precipitation pH on the PL intensity, the particle size and the dispersion have been studied. It has been found that 4% is the best Eu3+ molar concentration to get the highest PL intensity for both nano- and micro-Y2O3:Eu3+. The addition of butanol as a surfactant inhibits the grain growth and the agglomeration of particles efficiently by reducing the oxygen bridge bonds. As the pH rises, the PL intensity and the particle size increase due to the formation of oxygen bridge bonds.  相似文献   

18.
The red afterglow phosphors of CaWO4 doped with Eu3+, Zn2+ or (and) Si4+ were prepared by solid state reaction. All crystalline phases were identified by the X-ray powder diffraction (XRD). The photoluminescence spectra and decay curves as well as thermoluminecence (TL) curves of all samples were also investigated. In comparison to CaWO4:Eu3+ phosphor, the luminescence and afterglow properties could be improved greatly after being doped with Zn2+ or (and) Si4+ ions.  相似文献   

19.
The SrLa2?xO4:xEu3+ phosphors are synthesized through high-temperature solid-state reaction method at 1473 K with various doping concentration. Their phase structures, absorption spectra, and luminescence properties are investigated by X-ray diffraction (XRD), UV–Vis spectrophotometer and photoluminescence spectrometry. The intense absorption of SrLa2?xO4:xEu3+ phosphors have occurred around 400 nm. The prominent luminescence spectra of the prepared phosphors exhibited bright red emission at 626 nm. The doping concentration 0.12 mol% of Eu3+ is shown to be optimal for prominent red emission and chromaticity coordinates are x?=?0.692, y?=?0.3072. Considering the high colour purity and appropriate emission intensity of Eu3+ doped SrLa2O4 can be used as red phosphors for white light emitting diodes (WLEDs).  相似文献   

20.
《Optical Materials》2014,36(12):2309-2313
We report single-phased color-tunable phosphors (Sr2CeO4: Eu3+, Dy3+) synthesized by a polymer-network gel method for UV–LED. The photoluminescence properties and possible energy transfer mechanisms of Eu3+ and Dy3+ in Sr2CeO4 were investigated by experiments and first principles calculations. The results show that the 5D0  7F2 emission of Eu3+ is enhanced by the increase in the amount of Eu3+ ions and Eu3+ substitution makes more stable defect than Dy3+ substitution does. The photoluminescence mechanism of Sr1.994−xEuxDy0.006CeO4 can be explained by the energy transfer model with the consideration of the defect conditions in the crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号