首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental investigations of radiative property on pre-oxidized ZrB2–SiC–15 vol.%–C ultrahigh temperature ceramic (ZSC UHTC) at high temperature range of 1100–1800 °C were performed. By Fourier transform infrared radiant (FT-IR) spectrometer, spectral emissivity was measured in the wavelength region between 3 and 18 μm. Total normal emissivity was calculated using spectral emissivity data via theoretical formula. It has been found that high emissivity for all the testing specimens was presented, and the total normal emissivity is between 0.65 and 0.92 with temperature range from 1100 to 1800 °C. Moreover, the total normal emissivity of pre-oxidized ZSC ceramic decreased non-monotonously as the temperature increased. The total normal emissivity decreased as the testing temperature increased from 1100 to 1800 °C, whereas the total normal emissivity at the testing temperature of 1600 °C was higher than that of 1400 and 1800 °C. Macroscopical surface morphology and microstructure were carried out before and after the testing.  相似文献   

2.
High pressure-high temperature (HP-HT) treatment of melt-textured YBa2Cu3O7 – at 2 GPa, and in the 800–950 °C pressure-temperature range for 15–30 min in contact with monoclinic pre-annealed zirconia induces: (1) the increase of the material density from 5.7 to 6.3 g/cm3 (by 9%), (2) the increase of critical current density in the direction of c-axis of YBa2Cu3O7 – grains from 3–3.5 × 103 up to 7 × 103 A/cm2 (in the self-field at 77 K) while in the ab-plane it remains unchanged (104 A/cm2), (3) the increase of Vickers microhardness from 3.95 up to 5.3 GPa (estimated under the 4.91-N load). The increase in dislocation density in the (001) planes of HP-HT treated YBa2Cu3O7 – grains from 108 up to 1012 cm–2 may be one of the reasons of the increase in critical current density. The spaces between twin domains in YBa2Cu3O7 – before treatment were 100–150 nm. Completely detwinned wide areas or regions, where each second twin domain was narrowed to approximately 20 nm or tapered down to zero thickness within the first domain and the disappearance of 1/6 301 stacking faults have been observed in the treated samples.  相似文献   

3.
A metastable titanium alloy containing 10 wt % Zr and 12 wt % V has been found to undergo a substantial age-hardening reaction at temperatures as low as 20° C. The reaction involves continued growth of athermal-phase particles produced during water quenching from the-phase field. The morphology of the as-quenched is retained, implying the absence of long-range diffusion during ageing: this is consistent with the low value of the activation energy measured (93 kJ kg mol–1). It is suggested that the growth is caused by unpinning of/ interfaces as a result of the short-range motion of interstitials present in the alloy. The age-hardening produces a severe loss in tensile ductility and inhibition of stress-induced martensite formation.  相似文献   

4.
5.
6.
7.
Poor interlayer bonding can lead to early failures and thus to a reduction in service life of bituminous pavements. For this reason, it is important to identify the parameters influencing the interlayer shear failure and to characterize their effect by means of laboratory test. In particular, this study is focussed on the effects of test temperature and deformation rate on the interlayer shear strength (ISS) of double-layered asphalt concrete specimens. First, the ISS was measured at temperatures ranging from 0 °C to 30 °C and deformation rates ranging from 0.5 mm/min to 9 mm/min using the Ancona Shear Testing Research and Analysis (ASTRA) device. Then the experimental data were analyzed using a two-stage statistical modelling approach. In the first stage, the variation of ISS versus deformation rate, at each testing temperature, was modelled using both a power-law and a logarithmic function. In the investigated range of deformation rate, the models allowed to estimate the mean ISS with residual standard error varying from 0.062 MPa to 0.128 MPa. Moreover, the linear regression coefficients, which measure the influence of the deformation rate on ISS, changed with temperature. In the second stage, both temperature and deformation rate were used as joint predictors of ISS by using an approach based on the superposition of their effects. Results showed that the time–temperature superposition approach is applicable and a sigmoid-shaped master curve for ISS was obtained. The proposed approach was validated by using ISS measurements obtained on the same materials with different test devices.  相似文献   

8.
A correction to Röthlisberger's model of the pressure melting point effect in subglacial or englacial channels is evaluated. The correction term can be very important near the terminus. Elsewhere it predicts a decrease in piezometric pressure gradients between about ten and seventeen percent. It is shown that subglacial channel pressures can be much higher on a wavy bed than on a flat bed with the same average slope. An instability phenomenon is discussed which can occur when the flux decreases in overpressurized englacial channels.The effects of cold ice upon piezometric pressure gradients are investigated. Pressure gradients are reasonably small provided that the channel flux is sufficiently high. It is doubtful that channels can be maintained through cold ice during the winter.  相似文献   

9.
The nucleation and growth of grain boundary voids on the grain boundary facets, transverse to the direction of applied load, is one of the widely accepted mechanisms of damage development and material failure at high temperature.The aim of this work is the analysis of certain sources of stress concentration on the grain boundary which lead to time dependent high stress gradients.Specifically, the interaction of a dislocational pile-up with the grain boundary at high temperature is studied in order to model a variety of practical possible grain defects which can be approached on the basis of the theory of continuously distributed dislocations. Assuming the existence of the pile-up before the temperature rises, one investigates the time dependent stress field along the grain boundary, stress relaxation parameters and critical time. The diffusive absorption of the dislocations from the pile-up as well as the dislocation redistribution in the pile-up versus time are represented.This data leads to the estimation of possible grain boundary void nucleation, material damping due to diffusive matter redistribution and evaluation of plastic energy dissipation.  相似文献   

10.
This paper reviews the current knowledge on the fatigue behavior of discontinuously-reinforced metal–matrix composites at high temperature. The effect of cyclic loading at high temperature on the micromechanims of deformation, crack nucleation, and crack propagation are dealt with. The overall performance of these composites under isothermal and thermo-mechanical fatigue loading have been examined. A brief account of the current industrial applications of discontinuously-reinforced metal–matrix composites in components subjected to fatigue at high temperature is provided  相似文献   

11.
Nickel-free Ti–22Nb–6Zr alloys were fabricated by conventional powder metallurgy sintering method. X-ray diffractometer (XRD) investigation showed that the as-sintered alloys mainly consisted of β phase, with a few needle-like α phase precipitates. Differential scanning calorimetry (DSC) measurement in the temperature ranging from −70 °C to 400 °C and constant stress thermal cycling test by dynamic mechanical analysis (DMA) were unable to reveal the martensitic start temperature of sintered Ti–22Nb–6Zr alloys. Therefore low temperature compression tests were carried out to evaluate their phase transformation behavior indirectly. There was an obvious drop of both Young’s modulus and recoverable strain at −85 °C  −80 °C in the Young’s modulus-temperature and recoverable strain–temperature curves of sintered Ti–22Nb–6Zr alloys respectively, which was attributed to the occurrence of thermal elastic martensitic transformation at this temperature. At the testing temperature of −85 °C, a superelasticity of as high as 5.9% was achieved in the sintered alloys. The results had revealed that sintered Ti–22Nb–6Zr alloys own a great superelasticity intrinsically and would exhibit a much greater superelasticity at room temperature if their martensitic transformation start temperature (Ms) were closer to room temperature. Along with their noble biocompatibility, sintered nickel free Ti–22Nb–6Zr alloys are thus thought to be potentially competitive biomaterials for biomedical applications.  相似文献   

12.
High temperature stress relief intergranular cavitation and subsequent room temperature embrittlement of an aluminium-bearing-brass has been studied metallographically. The behaviour of a cast susceptible to cavitation has been compared to one which does not exhibit intergranular cavitation during stress relief, and which is subsequently more ductile at room temperature. A number of micro-analytical techniques (SIMS and EDX) failed to reveal any difference in the grain boundary chemistry between a cast susceptible to intergranular cavitation and one which was not, but it is suspected that the combined action of dissolved gases (e.g. hydrogen) and trace element impurities plays a major role in cavitation. The cavities formed during stress relief were often polyhedral in shape and it is considered that this occurs by the diffusion of matter around the cavity surface to attain a lower energy surface configuration. Second phase particles were found to play only a minor role in the nucleation of cavities. Room temperature intergranular fracture surfaces of material, in which cavities had formed during stress relief, were interpreted in terms of high temperature cavity formation and coalescence combined with low temperature plastic void growth and interlinkage.  相似文献   

13.
This paper presents failure analysis on a super alloy Inconel® 800 superheater tube in Kapar Power Station Malaysia. Visual inspection, microscopic examinations and creep analysis utilizing available related data are carried out to evaluate the failure mechanism and its root cause. The failed high temperature superheater (HTSH) tube was found snapped into two parts, heavily distorted shape and bent at several points. Microstructures of the failed tube showed that creep crack initiated at both external and internal surfaces of the tube and propagated as grain boundary creep cavities coalesced to form intergranular cracks. The severe geometry of tube causing steam flow starvation is identified to have caused increasing tube metal temperature resulting in overheating of the failed tube. Creep rupture is revealed as the cause of failure of the superheater tube.  相似文献   

14.
15.
We present a heuristic technique for solving a parameter estimation problem that arises in modeling the thermal behavior of electronic chip packages. Compact Thermal Models (CTMs) are network models of steady state thermal behavior, which show promise in augmenting the use of more detailed and computationally expensive models. The CTM parameter optimization problem that we examine is a nonconvex optimization problem in which we seek a set of CTM parameters that best predicts, under general conditions, the thermal response of a particular chip package geometry that has been tested under a small number of conditions. We begin by developing a nonlinear programming formulation for this parameter optimization problem, and then develop an algorithm that uses special characteristics of the optimization problem to quickly generate heuristic solutions. Our algorithm descends along a series of solutions to one-dimensional nonconvex optimization problems, obtaining a locally optimal set of model parameters at modest computational cost. Finally, we provide some experimental results and recommendations for extending this research. The authors are indebted to four anonymous referees for their help in improving the contribution and presentation of this paper.  相似文献   

16.
17.
The possibility of constructing an optical sensor for temperature monitoring based on the Goos-H?nchen (GH) effect is explored using a theoretical model. This model considers the lateral shift of the incident beam upon reflection from a metal-dielectric interface, with the shift becoming a function of temperature due mainly to the temperature dependence of the optical properties of the metal. It is found that such a sensor can be most effective by using long wavelength p-polarized incident light at almost grazing incidence onto the metal, where significant variation of negative GH shifts can be observed as a function of the temperature.  相似文献   

18.
19.
Abstract

MCrAlY (M = Ni, Co) coatings are commonly used on gas-turbine components as oxidation resistant overlay coatings and bondcoats for thermal barrier systems. In the present work the microstructural features and oxidation behavior of an aluminized Co-base MCrAlY-coating on a Ni-based superalloy have been investigated in the temperature range 925–1075 °C. Microstructural studies of the oxidized coatings by SEM/EBSD were complemented with numerical thermodynamic calculations using the software package ThermoCalc. In the as-received condition the outer part of the coating consisted mostly of β-(Ni,Co)Al. Formation of σ-CoCr was observed at the interface between the β-layer and the inner initial CoNiCrAlY. During high-temperature air exposure alumina based surface scales were formed but the oxidation induced Al depletion of the aluminized coating did not result in formation of the γ’-(Ni3Al) phase. Rather, the subscale formation of Co/Cr-rich phases was observed and a direct transformation of β- into γ-Ni phase after longer times. It is expected that these subscale microstructural changes thus affect the alumina formation and growth as well as the critical aluminum depletion in a different manner as in the case of corresponding β-NiAl coatings, although a direct comparison between various coating systems was not possible on the basis of the present results.  相似文献   

20.
The kinetics of hydroxyapatite (HAp) formation by direct hydrolysis of -tricalcium phosphate (-TCP) [-Ca3(PO4)2] have been investigated. Transformation kinetics were examined for reactions at 37 °C, 45 °C and 56 °C by isothermal calorimetric analysis. Setting times and morphologies of the resultant HAp were found to be strongly dependent on reaction temperature. XRD analysis accompanied by FTIR confirmed that phase pure calcium-deficient hydroxyapatite (CDHAp) [Ca10-x(HPO4)x(PO4)6-x(OH)2-x] was formed. Complete reaction occurs within 18, 11, 6.5 h at 37, 45 and 56 °C, respectively. The extent of HAp formation differs for particulate slurries and pre-shaped forms of reactant -TCP. Formation of hydroxyapatite in pre-formed pellets was hindered due to limited water penetration, but enhanced with the presence of NaCl as a pore generator. Regardless of the precursor characteristics and temperature, HAp formation is characterized by an initial period of wetting of the -TCP precursor, an induction period and a growth period during which the bulk transformation to HAp occurs. The microstructures of the resultant HAp at all temperatures were generally similar and are characterized by the formation porous flake-like morphology. Microstructural coarsening was observed for the CDHAp formed above the physiological temperature. The hardening generated by the hydrolysis reaction was demonstrated using diametrical compression tests. The original tensile strength of 56% dense -TCP increased from 0.70±0.1 MPa to 9.36±0.4 MPa after hydrolysis to CDHAp at 37 °C, corresponding to a density of 70%. ©2000 Kluwer Academic Publishers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号