首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为实现内陆大规模风电的可靠并网,采用高压直流输电技术和架空线路进行远距离电能传输是有效的解决方案。由于架空线易发生线路故障,采用具有故障自清除能力的换流器拓扑是主要解决途径之一。采用混合型模块化多电平换流器来进行风电并网,设计了不依赖于换流站间通信的并网系统交直流故障无闭锁穿越策略。系统无闭锁故障穿越期间并网点交流电压可控,风机可维持正常运行。考虑到故障期间风机持续并网输出功率,设计了耗散电阻和与风机内部斩波电阻相配合的策略,以耗散多余的能量。最后,通过PSCAD/EMTDC的多组仿真,验证了并网系统无闭锁穿越交直流故障及快速恢复的有效性。  相似文献   

2.
柔性直流系统凭借其独特的技术优势,正逐渐成为大规模远距离海上风电并网的主流方案。鉴于国内外相关研究较为匮乏,文中针对用于海上风电并网的柔性直流系统,详细研究了其中的过电压和绝缘配合问题。首先介绍了用于海上风电并网的柔性直流系统的基本情况,包括拓扑结构、站内主要设备和接地方式。然后根据实际情况详细介绍了过电压和绝缘配合的基本原则,包括典型故障选取、电压观测点选取、避雷器的配置方案和参数选择方法。再基于电磁暂态仿真平台PSCAD/EMTDC,搭建了国内某规划海上风电场的±320 kV/1 100 MW柔性直流送出系统仿真模型;基于时域仿真,研究了柔性直流系统的过电压特性,并且基于提出的避雷器的配置方案,给出了柔性直流换流站的主设备绝缘水平。研究成果填补相关领域研究的空白,可为未来国内类似工程提供重要的参考依据。  相似文献   

3.
介绍MMC换流器的结构及原理,研究MMC和HVDC在高原气候条件下风电并网中的有效性。  相似文献   

4.
适用于风电并网的模块化多电平柔性直流启动控制技术   总被引:1,自引:0,他引:1  
详细讨论了适用于风电并网的模块化多电平柔性直流输电系统启动控制策略。启动控制的核心在于子模块电容充电,可分为不控整流和高频整流两个阶段。针对不控整流阶段,基于其数学模型给出了限流电阻选型依据以抑制风电场侧换流器在启动及控制系统解锁瞬间的冲击电流。针对高频整流阶段,提出了基于直流电压斜率控制的充电策略以避免系统侧换流器输出过流。所设计的两个换流器启动顺序控制流程在仿真平台得到了验证。  相似文献   

5.
基于模块化多电平换流器的柔性直流输电(MMC-HVDC)是一种新型的灵活输电方式。同交流输电技术相比,MMC-HVDC输电技术具有输送容量大、输电距离远且损耗小等优点。在当前各类MMC拓扑中,半桥型MMC具有所用器件少、运行效率高、经济性好等特点,但缺乏直流故障清除能力。本文简单介绍了半桥型MMC发生故障的原因,对目前MMC-HVDC输电系统直流故障隔离技术的国内外研究现状进行综述,并结合当前研究现状,展望了MMC-HVDC输电系统直流故障保护的新的研究方向。  相似文献   

6.
常加辰  陈雷  孙鹏 《电力学报》2015,(1):13-18,66
对于海上风电场模块化多电平换流器型柔性直流输电(MMC-HVDC)的并网系统,首先介绍了MMCHVDC的基本原理,并分析了MMC的拓扑结构、数学模型及简化等效模型。然后,基于等效模型设计了MMCHVDC换流站的双闭环控制策略,送端换流站MMC1外环采用定直流电压和定无功功率控制,受端换流站MMC2采用定有功功率和定无功功率控制;内环均采用有功、无功功率解耦控制。最后利用Matlab/Simulink搭建仿真实验模型,仿真结果表明:所设计的MMC-HVDC控制策略实现了有功与无功的完全解耦,MMC1与MMC2的控制策略相互独立,影响较小,并且具有很好的动态响应特性。  相似文献   

7.
针对海上风电场并网的模块化多电平变换器(MMC)-高压直流(HVDC)系统在故障穿越过程中,由于卸荷电路是在直流电压达到一定值一段时间后才开始起作用,导致陆上侧子模块电压有很大的冲击,会有损坏元器件的风险,此处根据故障期间的系统特性对控制策略进行改进,在保证系统故障穿越性能的前提下对子模块电压进行抑制.最后,基于RTD...  相似文献   

8.
架空线MMC-HVDC是大规模风电友好型并网和可靠送出的有效手段.针对架空线故障率高的问题,采用对称双极接线方式和具备故障阻断能力的混合型MMC是其主要解决方案之一.基于此方案提出了风电经双极混合型MMC-HVDC并网的直流故障穿越协调控制策略.通过混合型MMC零直流电压控制实现了故障电流的有效阻断,并维持了故障极MM...  相似文献   

9.
《高电压技术》2021,47(8):2760-2768
海上风电柔直系统发生故障等暂态过程时,系统频率波动会影响健全风电场的正常运行,严重时将引起大规模风机脱网。为此,分析了海上风电系统交流电压频率动态与电压d轴、q轴分量的关系,进而提出一种频率波动抑制方案,在换流站控制器中引入频率环对系统母线电压的频率波动进行控制。考虑到风电系统不同位置频率动态的差异性,提出一种海上风电系统频率协同优化控制方案,利用风电机组的无功输出能力对风机汇集点处的频率波动问题进行进一步优化控制。最后,在MATLAB/Simulink中搭建基于模块化多电平换流器高压直流输电(modular multilevel converter based high voltage direct current transmission, MMC-HVDC)送出的海上风力发电系统仿真模型。研究结果表明:在系统故障与运行工况突变的情况下,频率协同优化控制方案可将风电系统母线电压与风机汇集点处电压的频率波动抑制到无控制时的30%以下。所提方案有效地实现了对风电柔直系统暂态情况下的频率波动抑制。  相似文献   

10.
在风电经基于电压源换流器的柔性直流输电(voltage source converter based high voltage direct current,VSCHVDC)系统并网的系统中,保证直流电压稳定是风电并网系统中稳定能量传输的关键。由于系统两侧换流器输入和输出的有功功率不平衡,VSC-HVDC系统直流输电线会出现过电压或欠电压现象,影响风电并网系统的稳态运行。为了抑制直流电压波动,提高系统的动态响应速度,提出一种负载电流前馈控制策略。在网侧换流器直流电压外环控制环节中,通过引入负载电流前馈控制策略,来抵消直流电压发生波动的部分,使输出直流电压在负载突变时的波动减弱。通过对直流电压外环动态性能的分析,得出电压外环控制器参数整定公式以及前馈控制传递函数。根据直流侧电容设计要求,分析电压外环控制器对直流侧电容参数选取的影响。最后,利用MATLAB/Simulink软件进行了仿真验证,研究结果表明,该控制策略能改善系统的动态响应性能,减小直流电压波动,实现有功功率的稳定输出。  相似文献   

11.
柔性直流输电技术凭借其为无源电网提供同步交流电源支撑的能力,正逐渐成为远距离海上风电并网的首选方案。主要针对柔性直流系统用于海上风电并网时的接地方式进行了深入的研究。首先对比分析了目前已有工程中的几种换流站接地方式,描述了几种接地方式的优缺点。然后介绍了柔性直流系统用于海上风电并网的拓扑结构和控制策略,选出了三种适用于该场景的换流站接地方式。最后针对国内某规划海上风电场,在电磁仿真软件PSCAD/EMTDC中搭建了±320 kV/1 100 MW柔性直流系统仿真模型。并基于该模型对柔性直流系统进行了故障扫描,研究对比了三种接地方式下系统的过电压特性,得出三种接地方式下的柔性直流系统均具有相似的过电压特性。该研究成果填补了相关研究领域的空白,可以为国内的海上风电并网工程提供参考依据。  相似文献   

12.
随着远海大容量海上风电的发展,基于模块化多电平变换器(modular multilevel converter,MMC)的高压柔性直流输电技术成为实现远海风电输送的重要方案。然而,由于高压直流外送电缆距离长,敷设环境恶劣,外送电缆易遭受各类意外事件。该文针对海底电缆最为常见的单极永久性接地故障,结合海上半桥型MMC—岸上混合型MMC的输电拓扑,分别提出利用海上换流站一主一备变压器和接入低电压等级变压器2种组网方案,进而提出实现容错运行的换流站、风电场容错控制策略。最后仿真验证了在所提组网方案下,该文所提控制策略可实现海底电缆单极接地故障下海上风电经柔直并网系统容错运行,并分析对比了所提方案的技术难度、作用效果、经济性及适用场景。  相似文献   

13.
海上风电的大规模开发使得柔性直流(VSC-HVDC)输电技术得到了越来越广泛的关注与应用。文中通过引入交流电压下垂控制,提出了基于VSC-HVDC的适应送端交流分散模式下的风电场多端并网的协调控制策略。在柔性直流输电传统控制策略的基础上,保留配电网侧逆变器的定直流电压控制,以保证系统功率平衡;而使风电场侧整流器采用交流电压下垂控制,以代替原有的恒功率控制,从而引入下垂控制的无需通信联系和合理动态分配等优势。仿真分析表明所提控制策略不仅能保证有功出力灵活自动跟踪系统额定值,而且还具有一定的负荷波动容忍度和交直流故障隔离功能,且在风电场采用送端交流分散模式同时向多端配电网供电时,能在风电机组切出系统的情况下快速实现潮流反转,以保证系统供电可靠性,并能自动按照额定比例在各配电网间合理分配动态功率,为风电分散并网的协调运行提供了有效的解决途径。  相似文献   

14.
双极MMC-HVDC系统直流故障特性研究   总被引:2,自引:0,他引:2  
直流故障是模块化多电平换流器高压直流输电(MMC-HVDC)的主要故障类型,目前国内外对于MMC-HVDC直流侧故障的研究主要集中于伪双极系统,而对于真双极系统直流侧故障的研究还处于起步阶段。首先,介绍真双极MMC的拓扑结构和工作原理,并根据实际交直流系统电气参数、桥臂子模块电容及电抗的放电机制,建立真、伪双极两种拓扑MMC-HVDC系统直流故障状态下的对应等效电路。然后,对比分析两种拓扑不同阶段故障电流在MMC桥臂上的流通路径,重点研究了故障短路电流对换流站桥臂阀组影响程度的差异,并指出三种电气参数与故障短路电流变化之间的内在关系。最后,基于RT-LAB仿真平台,搭建51电平双极MMCHVDC双端直流输电模型,仿真结果证明了直流故障特性研究方法的正确性。  相似文献   

15.
基于VSC-HVDC的双馈式变速恒频风电机组启动及并网控制   总被引:1,自引:0,他引:1  
启动控制是双馈式变速恒频风机可靠并网运行的基础,同时柔性直流输电技术作为最具技术经济性的风电场并网方式,其工程应用日益广泛。该文分析了双馈式变速恒频风机的柔性直流并网控制,提出一种基于定子磁链定向和转子电流闭环控制的双馈式风机启动控制,以抑制并网过程中的冲击电流。为实现风电场稳态运行,设计风场侧模块化多电平换流器无源电压跟随控制器,使其在风机并网过程中呈现理想电压源特性;该控制策略无需检测风电场物理量,只在换流器本地即可实现。在PSCAD/EMTDC环境下进行49电平柔性直流风电并网仿真分析,并进行了现场试验,仿真和试验结果验证了所提出的风电场经柔性直流启动及并网控制策略的正确性。  相似文献   

16.
DFIG风电场经模块化多电平柔性直流并网控制策略   总被引:1,自引:0,他引:1  
比较了风电场常见的3种并网方式,分别讨论了适用于风电接入的模块化多电平柔性直流输电系统启动控制策略及双馈感应发电机(DFIG)自身的启动控制,设计了稳态运行时的模块化多电平柔性直流控制器,以可靠接纳风电并网。基于PSCAD/EMTDC仿真平台分析了所提出的控制理论,验证了在稳定运行及风速改变等不同工况下,模块化多电平柔性直流输电系统均可实现风电场启动及可靠高效并网。  相似文献   

17.
在基于模块化多电平换流器高压直流输电系统(MMC-HVDC)正常运行之前需对换流器桥臂子模块电容充电,为了减少预充电阶段产生的电压电流冲击,需对系统的预充电启动策略进行设计。以电容电压实时排序算法为基础,分析了换流器不可控充电阶段特性。在可控阶段,根据子模块闭锁和旁路的运行状态提出了子模块的开环预充电方案,该方案适用于不同类型子模块且无需PI参数整定。最后,在Matlab/Simulink中搭建换流站预充电模型对所提策略进行验证。  相似文献   

18.
以霍林河地区某孤立系统为研究对象,以降低系统电压波动和提高系统电压稳定性为目的,提出风电场采用柔性直流方式接入系统。柔性直流输电方式基于具有自换向特性的电压源换流器,并采用脉宽调制技术,实现了有功无功的解耦,从而可进行独立连续的调节。首先对采用不同输电方式和不同风电并网容量的系统进行稳态潮流仿真,负荷节点电压维持在稳定范围内;之后对系统中常规机组故障、负荷故障和线路故障进行暂态仿真,故障后电压波动在允许范围内,并迅速趋于平稳,无需稳定措施。仿真结果表明,风电场可以采用柔性直流输电方式接入系统,系统电压稳定性较常规交流方式有很大提高。  相似文献   

19.
MMC-HVDC向无源网络供电的停机策略   总被引:1,自引:0,他引:1  
修正了能馈阶段直流参考电压下降时的最低值,计算了系统整体停机时间,推导了能耗阶段内能耗电阻选取的表达式。在能馈阶段,考虑桥臂冗余子模块在内,将投入模块数和直流电压协调配合,提出了一种新的停机策略。该策略不仅可以最大程度地将电容中的储存能量反馈至电网,而且大大降低了能耗电阻的耐压等级和功率等级,同时电容电压可以精确地控制在安全电压以下,并且停机速度更快。最后,在Matlab中搭建了基于MMC-HVDC向无源网络供电的仿真系统,仿真结果表明了所提停机策略的有效性。  相似文献   

20.
针对永磁同步风电机组远距离大规模并网的问题,研究了采用半桥型模块化多电平换流器(MMC)和直流断路器(DCCB)进行架空直流输电的并网方案。但架空线路故障率高,在发生直流侧故障、网侧交流故障时,基于MMC的高压直流(MMC-HVDC)系统保护装置会动作,导致MMC闭锁,不能不间断运行。为解决MMC-HVDC穿越交、直流故障的问题,基于DCCB和耗散电阻,提出了一种MMC-HVDC系统的交、直流故障穿越方案。在故障发生后,通过设计DCCB风电场侧MMC降压协调控制策略,以及高压直流侧耗散电阻和风电场侧制动电阻间的控制策略和配合方案,实现了MMC-HVDC系统的交、直流故障穿越。最后,通过PSCAD/EMTDC下的多组仿真,验证了上述交直流故障穿越方案的有效性和正确性。仿真结果表明,所设计的穿越方案能够使MMC-HVDC系统在不闭锁MMC的前提下,安全穿越故障期;在故障清除后,系统快速恢复到正常运行状态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号