首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y0.99VO4:0.01Dy3+, Y0.99PO4:0.01Dy3+ and YxVO4:0.01Dy3+ phosphors were synthesized by chemical co-precipitation method. All the samples were characterized by X-ray powder diffraction (XRD) and photoluminescence spectroscopy. XRD results show that the samples only have single tetragonal structure and the crystallinity of Y0.99VO4:0.01Dy3+ phosphor is higher than that of Y0.99PO4:0.01Dy3+ phosphor when the heat treatment process is same. Photoluminescence excitation spectra results show that the Y0.99VO4:0.01Dy3+ and Y0.99PO4:0.01Dy3+ phosphors can be efficiently excited by ultraviolet light from 250 nm to 380 nm, the former have a wide Dy3+–O2? charge transfer band ranging from 260 nm to 350 nm including a peak at 310 nm, the latter have four peaks at 294 nm, 326 nm, 352 nm and 365 nm. Emission spectra of all the samples exhibit a strong blue emission (483 nm) and another strong yellow emission (574 nm). Moreover, the yellow-to-blue emission intensity ratio and color temperature of emission of Dy3+ are strongly related to excitation wavelength in Y0.99PO4:0.01Dy3+ phosphor, but it is almost not in Y0.99VO4:0.01Dy3+ phosphor. For YxVO4:0.01Dy3+ (x = 0.94, 0.97, 0.99, 1.01, 1.03) phosphors, with increasing value of x, the body color of phosphor changes from yellow to white and the strongest peak in excitation spectra shifts a little to shorter wavelength. It is detrimental to luminous intensity when Y3+ content deviate stoichiometric ratio, but the influence of Y3+ on the color temperature of emission of YVO4:Dy3+ phosphor is slight.  相似文献   

2.
Double-emitting blue phosphor Sr3(PO4)2: Eu2+, Dy3+ was synthesized by solid state reaction under H2 atmosphere. XRD exhibited the pure hexagonal phase of the prepared phosphor. The photoluminescence results showed that all samples had intense broad absorption band between 250 and 450 nm, which matched well with the near-UV (350–420 nm) emission band of InGaN-based chips. The emission spectrum of Sr3(PO4)2: Eu2+, Dy3+ consisted of two broad bands, peaked at 485 nm and 410 nm, which originated from two luminescent centers, related to 4f65d1  4f7 transition of Eu2+ in six-coordinated Sr(I) and ten-coordinated Sr(II) sites respectively. The intensity ratio of two emission bands could be easily tuned by adjusting Dy3+ co-doping content, which resulted in color-tunable luminescence in bluish green region to purplish blue region.  相似文献   

3.
A series of color-tunable and white light emitting phosphors BaY2Si3O10:Tm3+,Dy3+ were synthesized by a high temperature solid-state reaction, and their phase structure, photoluminescence properties, and energy transfer processes between rare-earth ions were investigated in detail. Upon UV excitation, white light emission depending on dopant concentrations could be achieved by integrating a blue emission band located at 458 nm and an orange one located at 576 nm attributed to Tm3+ and Dy3+ ions, respectively. In addition, the energy transfer process between Tm3+ and Dy3+ ions was demonstrated to be a resonant type via a dipole–quadrupole mechanism. Preliminary studies showed that the phosphor might be promising as a single-phased white-light-emitting phosphor for UV chip pumped white-light LEDs.  相似文献   

4.
《Optical Materials》2014,36(12):2320-2328
Trivalent dysprosium-doped strontium silicate (Sr2SiO4) phosphors were prepared by sol–gel synthesis using tetra ethyl orthosilicate (TEOS) as precursor. The synthesis temperature could be brought down to 600 °C for formation of a single phase sample. The material was characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), photoluminescence (PL), and thermally stimulated luminescence (TSL). The luminescence study revealed strong 4F9/2  6H13/2 transition at 577 nm (yellow), strong 4F9/2  6H15/2 transition at 482 nm (blue) and weak 4F9/2  6H11/2 transition at 677 nm (red), when excited by 250 nm (Charge transfer band, CTB) or 352 nm (f–f band). The concentration of the dopant ion and the temperature of annealing were optimized for maximum PL intensity. The critical energy-transfer distance for the Dy3+ ions was evaluated based on which, the quenching mechanism was verified to be a multipole–multipole interaction. The thermally stimulated luminescence studies of Sr2SiO4:Dy3+ sample showed main TSL glow peak at 413 K. The trap parameters namely activation energy (E), order of kinetics (b), and frequency factor (s) for this peak were determined using glow curve shape method.  相似文献   

5.
Eu2+-doped borate fluoride BaAlBO3F2 was synthesized by the conventional high temperature solid state reaction. The crystal phase formations were confirmed by X-ray powder diffraction (XRD) measurements and the structure refinement. The photoluminescence (PL) excitation and emission spectra, and the decay curves were investigated. Eu2+-doped BaAlBO3F2 phosphor can be efficiently excited by near-UV light and presents narrow blue luminescence band centered at 450 nm. The maximum absolute quantum efficiency (QE) of BaAlBO3F2:0.05Eu2+ phosphor was measured to be 76% excited at 398 nm light at 300 K. The thermal stability of the blue luminescence was evaluated by the luminescence decays as a function of temperature. The phosphor shows an excellent thermal stability with high thermal activation-energy on temperature quenching effects because of the rigid crystal lattices.  相似文献   

6.
《Optical Materials》2014,36(12):2261-2266
A series of novel plate-like microstructure Na3SrB5O10 doped with various Dy3+ ions concentration have been synthesized for the first time by solid-state reaction (SSR) method. X-ray diffraction (XRD) results demonstrated that the prepared Na3SrB5O10:Dy3+ phosphors are single-phase pentaborates with triclinic structure. The plate-like morphology of the phosphor is examined by Field emission scanning electron microscopy (FE-SEM). The existence of both BO3 and BO4 groups in Na3SrB5O10:Dy3+ phosphors are identified by Fourier transform infrared (FT-IR) spectroscopy. Upon excitation at 385 nm, the PL spectra mainly comprising of two broad bands: one is a blue light emission (∼486 nm) and another is a yellow light emission (∼581 nm), originating from the transitions of 4F9/2  6H15/2 and 4F9/2  6H13/2 in 4f9 configuration of Dy3+ ions, respectively and the optimized dopant concentration is determined to be 3 at.%. Interestingly, the yellow-to-blue (Y/B) emission integrated intensity ratio is close to unity (0.99) for 3 at.% Dy3+ ions, suggesting that the phosphors are favor for white illumination. Moreover, the calculated Commission International de l’Eclairage (CIE) chromaticity coordinates of Na3SrB5O10:Dy3+ phosphors shows the values lie in white light region and the estimated CCT values are located in cool/day white light region.  相似文献   

7.
The vacuum ultraviolet spectroscopic properties of GdOCl:Re3+ (Re3+ = Ce3+, Tb3+, Eu3+, and Dy3+) are investigated in detail for the first time. The host absorption band is determined to be around 179 nm, and the f–d transition bands as well as the charge transfer bands are assigned. Upon 179 nm excitation, Re3+ (Re3+ = Ce3+, Tb3+, Eu3+, Dy3+) ions shown their characteristic emissions. Energy transfers from Gd3+ to Re3+ ion were observed. A broad band ranging from 350 to 400 nm corresponding to the d–f transition of Ce3+ is observed. Eu3+ has typical red emission with the strongest peak at 620 nm; Tb3+ shows characteristic transition of 5D3,4  7Fj, and its spin-forbidden and spin-allowed f–d transitions in VUV region are calculated with Dorenbos’ equations, these calculated values agree well with the experimental results. Dy3+ presents yellow emission (4F9/2  6H13/2) with the strongest peak at 573 nm.  相似文献   

8.
For the first time series of MgO phosphors doped with different concentrations of Dy3 + (1–9 mol%) were prepared by solution combustion method using glycine as a fuel. The final products were well characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The powder X-ray diffraction patterns of the as-formed product show single cubic phase. The crystallite size estimated using Scherrer's method was found to be in the range 5–15 nm and the same was confirmed by transmission electron microscopy result. Photoluminescence properties of Dy3 + (1–9 mol%) doped MgO for near ultra violet excitation (325 nm) was studied in order to investigate the possibility of its use in white light emitting diode applications. The emission spectra consists of intra 4f transitions of Dy3 +, namely 4F9/2  6H15/2 (483 nm), and 4F9/2  6H13/2 (573 nm). Further, the emission at 573 nm shows strong yellow emission and can be applied to the yellow emission of phosphor for the application for near ultraviolet excitation. The intensity of yellow emission was attributed to intrinsic defects, especially oxygen-vacancies, which could assist the energy transfer from the MgO host to the Dy3 + ions. The Commission International De I-Eclairage chromaticity co-ordinates were calculated from emission spectra, the values (x,y) were very close to the National Television System Committee standard value of white emission. Therefore, the present phosphor was highly useful for display applications.  相似文献   

9.
《Optical Materials》2010,32(12):1784-1786
Dy-doped lead borate glasses were studied. The luminescence spectra showed two characteristic bands at 480 and 573 nm due to 4F9/26H15/2 (blue) and 4F9/26H13/2 (yellow) transitions of Dy3+. The yellow/blue luminescence of trivalent dysprosium was analyzed as a function of the B2O3/PbO ratios, the activator (Dy3+) and the PbX2 (X = F, Cl, Br) content.  相似文献   

10.
Yellow-emitting phosphor Ca2BO3Cl:Eu2+ was synthesized by a solution-combustion method. The phase structure and microstructure were determined by the X-ray diffraction (XRD) and scanning electron microscope (SEM) analysis, respectively. The as-prepared Ca2BO3Cl:Eu2+ phosphor absorbed near ultraviolet and blue light of 320–500 nm, and showed an intense yellow emission band centered at 569 nm with the CIE coordinate of (0.453, 0.526). The lifetime of Eu2+ ions in Ca2BO3Cl:Eu2+ phosphor was measured, furthermore the temperature dependent luminescence property and mechanism were studied, which also testified that the present phosphor had a promising potential for white light-emitting diodes.  相似文献   

11.
The Ba2Mg(PO4)2:Eu2+, Mn2+ phosphor is synthesized by a co-precipitation method. Crystal phase, morphology, excitation and emission spectra of sample phosphors are analyzed by XRD, SEM and FL, respectively. The results indicate particles synthesized by a co-precipitation method have a smaller size in diameter than that synthesized by conventional solid-state reaction method. Emission spectra of BMP:Eu2+, Mn2+ phosphor show a broad blue and a broad yellow emission bands with two peaks at about 456 nm and 575 nm under 380 nm excitation. An overlap between Eu2+ emission band and Mn2+ excitation band proves the existence of energy transfer from Eu2+ to Mn2+. Emitting color of the BMP:Eu2+, Mn2+ phosphor could be tuned by adjusting relative contents of Eu2+ and Mn2+ owing to energy transfer formula. Therefore, BMP:Eu2+, Mn2+ may be considered as a potential candidate for phosphor for near-UV white LED.  相似文献   

12.
《Optical Materials》2014,36(12):2138-2145
Dy3+ and Tm3+ co-doped YAl3(BO3)4 (YAB) phosphors were prepared by solid-state reaction method at 1200 °C/3 h. The average crystallite size was determined as 52.09 nm from the X-ray diffraction measurements. Upon 352 and 359 nm near ultra violet excitation, the YAB:Dy3+–Tm3+ phosphors exhibit Dy3+:4F9/2  6HJ (J = 15/2, 13/2, 11/2) and Tm3+:1D2  3F4 transitions with different luminescence intensity. The photoluminescence emission and decay measurements revealed the energy transfer from Dy3+ to Tm3+ ions under 359 nm excitation only. The energy transfer between Dy3+ and Tm3+ takes place in Dy3+–Tm3+ clusters through exchange interaction mechanism. The Commission International de I’Eclairage chromaticity coordinates of YAB:Tm3+ phosphor (λex = 359 nm) were found very close to the European Broadcasting Union and National Television Standard Committee illuminants. The emission color of the studied phosphors could be tuned from blue-to-white as a function of excitation wavelength. The YAB:Dy3+–Tm3+ phosphors can be used as potential candidates in display technology.  相似文献   

13.
《Optical Materials》2008,30(12):1680-1684
A novel red emitting phosphor α-Gd2(MoO4)3:Eu3+ was developed for white light emitting diodes (LEDs). The phosphor was prepared by solid-state reaction. The effects of the flux content and the activator concentration on the crystal structure, morphology and luminescent properties were investigated by using XRD, SEM, and fluorescent spectra. These results showed that this phosphor can be effectively excited by ultraviolet (UV) (395 nm) and blue (465 nm) light, matching the output wavelengths of ultraviolet or blue LED chips. The α-Gd2 (MoO4)3 phosphor may be a better candidate for solid state lighting application.  相似文献   

14.
Photoluminescence (PL) properties of silver (Ag) and dysprosium (Dy) codoped zeolites were investigated. It was found that PL from the 4F9/26H13/2 transition of Dy3+ ions at 575 nm is more than 50 times enhanced by the presence of Ag+ ions under ultraviolet excitation. The excitation wavelength dependence of the PL intensity coincided well with the absorption spectra of Ag+ ions, indicating that Dy3+ ions are excited by the energy transfer from Ag+ ions. In addition, by carefully optimizing annealing condition and Dy and Ag concentration, white light was realized due to the combination of blue emission of Ag+ ions, yellow emission of Dy3+ ions and red emission of Ag clusters.  相似文献   

15.
Tb3+-doped ZnMoO4 green phosphor was synthesized by a co-precipitation method. The morphology and structure of the phosphor were characterized by Scanning electron microscopy (SEM) and X-ray diffraction (XRD). Photoluminescence (PL) spectra were also used to characterize the ZnMoO4:Tb3+ samples. The results show that ZnMoO4:Tb3+ phosphor has triclinic structure with diameters ranging from 1.0 to 2.0 μm. The obtained ZnMoO4:Tb3+ phosphor emits green light emission centered at 541 nm corresponding to the 5D4  7F5 transition of Tb3+ when excited by 378 nm or 488 nm. The optimized concentration of Tb3+ is 15 mol.% for the highest emission intensity at 541 nm, and the concentration quenching occurs when the Tb3+ concentration is beyond 15 mol.%. The concentration quenching mechanism can be interpreted by the quadrupole–quadrupole interaction of Tb3+ ions. The present work suggests a convenient, cost-effective method for green phosphor, which may lead to potential applications in white light-emitting diodes (WLED).  相似文献   

16.
The photoluminescence (PL) and vacuum ultraviolet (VUV) excitation properties are studied for the BaZr(BO3)2:Eu3+ phosphor with incorporating the Al3+, La3+, or Y3+ ion into the lattice. The excitation spectrum shows an absorption band in the VUV region with the band-edge at 200 nm and a very weak charge transfer band of Eu3+ at about 226 nm. The luminescence spectrum shows a strong emission at 615 nm (5D0  7F2 transition) and weak emission at 594 nm (5D0  7F1 transition) in BaZr(BO3)2:Eu3+, with a good red color purity. The PL intensity is increased by incorporating Al3+ into the BaZr(BO3)2 lattice. The PL intensity has also increased by incorporating La3+ into the lattice, however, the red color purity has deteriorated because of the increased centrosymmetric nature of the site. With the incorporation of Y3+ into the BaZr(BO3)2 lattice, the PL characteristics of the Eu3+ activator resembles that in the YBO3 lattices. The intensity of the red PL for the Eu3+ activator is the highest with good color purity for BaZr(BO3)2:Eu3+ incorporated with both Al3+ (10%) and La3+ (0.5%).  相似文献   

17.
A green-emitting phosphor of Eu2+-activated Sr5(PO4)2(SiO4) was synthesized by the conventional solid-state reaction. It was characterized by photoluminescence excitation and emission spectra, and lifetimes. In Sr5(PO4)2(SiO4):Eu2+, there are at least two distinguishable Eu2+ sites, which result in one broad emission situating at about 495 nm and 560 nm. The phosphor can be efficiently excited in the wavelength range of 250–440 nm where the near UV (~ 395 nm) Ga(In)N LED is well matched. The dependence of luminescence intensities on temperature was investigated. With the increasing of temperature, the luminescence of the phosphor shows good thermal stability and stable color chromaticity. The luminescence characteristics indicate that this phosphor has a potential application as a white light emitting diode phosphor.  相似文献   

18.
A spectroscopic investigation of zinc phosphate glass activated with 1.0, 5.0 and 10.0 mol% of Dy(PO3)3 is performed through absorption and luminescence spectra and decay times to study its potentialities for yellow laser operation upon excitation at 399 nm, which fits to the requirements of GaN LEDs. In the 1.0 mol% Dy(PO3)3-doped glass a quantum efficiency of 80 ± 5% was estimated for the dysprosium 4F9/2 level luminescence, the 4F9/2  6H13/2 yellow emission shows greater intensity than the 4F9/2  6H15/2 blue emission, as well as a very high optical gain, which might make this glass phosphor a promising gain medium for solid state yellow laser pumped by GaN LEDs.  相似文献   

19.
Antimony phosphate glasses (SbPO) doped with 3 and 6 mol% of Cr3+ were studied by Electron Paramagnetic Resonance (EPR), UV–VIS optical absorption and luminescence spectroscopy. The EPR spectra of Cr3+-doped glasses showed two principal resonance signals with effective g values at g = 5.11 and g = 1.97. UV–VIS optical absorption spectra of SbPO:Cr3+ presented four characteristics bands at 457, 641, 675, and 705 nm related to the transitions from 4A2(F) to 4T1(F), 4T2(F), 2T1(G), and 2E(G), respectively, of Cr3+ ions in octahedral symmetry. Optical absorption spectra of SbPO:Cr3+ allowed evaluating the crystalline field Dq, Racah parameters (B and C) and Dq/B. The calculated value of Dq/B = 2.48 indicates that Cr3+ ions in SbPO glasses are in strong ligand field sites. The optical band gap for SbPO and SbPO:Cr3+ were evaluated from the UV optical absorption edges. Luminescence measurements of pure and Cr3+-doped glasses excited with 350 nm revealed weak emission bands from 400 to 600 nm due to the 3P1  1S0 electronic transition from Sb3+ ions. Cr3+-doped glasses excited with 415 nm presented Cr3+ characteristic luminescence spectra composed by two broad bands, one band centered at 645 nm (2E  4A2) and another intense band from 700 to 850 nm (4T2  4A2).  相似文献   

20.
Eu2+-activated Ba3Si6O12N2 green-emitting phosphors were synthesized by a solid-state reaction method. X-ray diffraction patterns showed that the synthesized phosphor sintered at 1200 °C for 12 h was a Ba3Si6O12N2 pure phase. The synthesized phosphors were excited in UV to blue light. The emission spectra showed a broad green emission band when excited with a light at 465 nm. The highest emission intensity was observed at a Eu2+ concentration of 0.25 mol and the NH4Cl concentration of the optimized flux was found to be 9 wt.%. The obtained green-emitting Ba3Si6O12N2:Eu2+ phosphors could be applied to white LED applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号