首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent years, the SnAgCu family of alloys has been found a widely application as a replacement for the conventional SnPb solders in electronic industry. In order to further enhance the properties of SnAgCu solder alloys, alloying elements such as rare earth, Bi, Sb, Fe, Co, Mn, Ti, In, Ni, Ge and nano-particles were selected by lots of researchers as alloys addition into these alloys. Rare earth (RE) elements have been called the ‘‘vitamin” of metals, which means that a small amount of RE elements can greatly enhance the properties of metals, such as microstructure refinement, alloying and purification of materials and metamorphosis of inclusions. In addition, a small amount of Zn addition has the ability to reduce undercooling efficiently and suppress the formation of massive primary Ag3Sn plates, and Bi/Ga has the ability to enhance the wettability of SnAgCu alloys as well as Ni. Moreover, adding Co/Fe/Ge can effectively refine microstructure, modify interfacial Cu-Sn compounds and increase the shear strength of joints with Cu. This paper summarizes the effects of alloying elements on the wettability, mechanical properties, creep behavior and microstructures of SnAgCu lead-free solder alloys.  相似文献   

2.
Lead-free solders with excellent material properties and low cost are essential for the electronics industry. It has been proved that mechanical properties of SnAgCu alloys can be remarkably improved with a minute addition of rare earth (RE) elements. For comparison and optimization, three valuable solder candidates, Sn3.8Ag0.7Cu0.05RE, Sn3Ag0.5Cu0.05RE, and Sn2.9Ag1.2Cu0.05RE, were chosen due to the excellent properties of their own SnAgCu basic alloys. Wetting properties, melting temperature, bulk tensile properties, and joint tensile and shear properties were investigated. In addition, the microstructures of solder joints were observed and the effects of microstructure on mechanical properties were analyzed. Experimental results indicated that the tensile and shear strengths of solder joints were decreased from Sn3.8Ag0.7Cu0.05RE, Sn2.9Ag1.2Cu0.05RE, to Sn3Ag0.5Cu0.05RE, in order. Such difference in mechanical properties could be attributed to the influence of slightly coarse or strong Cu6Sn5 scallops in the reaction layer as well as superior eutectic network and large volume percentage of large primary intermetallic compounds (IMCs) inside the solder joints. It is also suggested that the size and volume percentage of large primary IMCs inside the solder be controlled. In addition, serration morphology was observed at the edge of large primary and eutectic IMCs in the three solder joints, which could be related to the content of Ag, Cu, and RE. The serration morphology was proved to be beneficial to mechanical properties theoretically. Furthermore, the three alloys investigated possessed similar wetting properties, melting temperatures, and bulk tensile properties.  相似文献   

3.
Accelerated reliability tests have been performed on leadless and leaded lead-free and lead containing SMT component assemblies. Results so far have shown that lead-free reflow soldering is a viable alternative for conventional lead based reflow soldering. The selected ternary eutectic solder alloy SnAg3.8Cu0.7 requires higher processing temperatures which could restrict the use of certain board and component types, but other than that no major modifications seem necessary. Although better SnAg3.8Cu0.7 bulk mechanical properties were obtained compared to the near eutectic lead bearing bulk solder properties, reflowed solder joints did not reflect this difference. In general, quite similar reliability results were obtained as found for the lead based solders. Dependent on board and component metallisations and use environment, the reliability of the lead-free solders could perform better or worse than the lead based solders. Temperature dependent aspects such as solderability and mechanical behaviour of the lead-free assemblies could play a role in this. Although microstructural differences can be seen between the lead-free and lead bearing solder joints, similar joint failure mechanisms occur. Resistor solder joint cracks propagate from underneath the component through either transgranular (lead-free) grains or along intergranular (lead) grain boundaries between lead-rich and tin-rich areas and into coarsened regions near the component terminations. Gullwing lead cracks were seen propagating from the heel fillet along the lead/solder interfacial intermetallic mostly (some cracks started in the heel fillet and propagated through the solder body dispersed with coarsened spherical Ag3Sn intermetallic particles). Package design and leadframe material seem to play a more important role in the fatigue mechanism than the change in microstructure of the solder joint.  相似文献   

4.
A ZrO2 nanoparticle strengthened lead-free Sn-3,5Ag-ZrO2 solder was prepared by mechanically stirring ZrO2 nanoparticles into the molten melt of eutectic Sn-3.5Ag alloy. The influence of ZrO2 nanoparticles on the eutectic solidification process, in particular, the formation of Ag3Sn intermetallic compounds (IMCs) and the associated microstructure that forms and microhardness of Sn-3.5Ag solder, was systematically investigated. The addition of ZrO2 nanoparticles significantly refined the size of Ag3Sn IMCs due to the strong adsorption effect of the ZrO2 nanoparticles. The refined Ag3Sn IMCs increase the Vicker’s microhardness of the prepared Sn-3.5Ag-ZrO2 solder, which corresponds well with the prediction of the classic theory of dispersion strengthening.  相似文献   

5.
The creep-rupture lives of Sn3.8Ag0.7Cu and Sn3.8Ag0.7Cu0.03Ce lead-free solder joints for electronic packaging were investigated, respectively. And the relationship between creep behavior and intermetallic compound (IMC: Ag3Sn, Cu6Sn5, CeSn3) particles in SnAgCu/SnAgCuCe solder joints has been obtained. Meanwhile, rare earth Ce concentration gradient and retardation effect of Ce on the IMC layer have been observed at the solder/Cu interface. Moreover, aging reaction of Sn and Cu, and the effect mechanism of rare earth Ce on two IMCs (Cu6Sn5 and Cu3Sn) are reported.  相似文献   

6.
The Cu/SnAg double-bump structure is a promising candidate for fine-pitch flip-chip applications. In this study, the interfacial reactions of Cu (60 μm)/SnAg (20 μm) double-bump flip chip assemblies with a 100 μm pitch were investigated. Two types of thermal treatments, multiple reflows and thermal aging, were performed to evaluate the thermal reliability of Cu/SnAg flip-chip assemblies on organic printed circuit boards (PCBs). After these thermal treatments, the resulting intermetallic compounds (IMCs) were identified with scanning electron microscopy (SEM), and the contact resistance was measured using a daisy-chain and a four-point Kelvin structure. Several types of intermetallic compounds form at the Cu column/SnAg solder interface and the SnAg solder/Ni pad interface. In the case of flip-chip samples reflowed at 250°C and 280°C, Cu6Sn5 and (Cu, Ni)6Sn5 IMCs were found at the Cu/SnAg and SnAg/Ni interfaces, respectively. In addition, an abnormal Ag3Sn phase was detected inside the SnAg solder. However, no changes were found in the electrical contact resistance in spite of severe IMC formation in the SnAg solder after five reflows. In thermally aged flip-chip samples, Cu6Sn5 and Cu3Sn IMCs were found at the Cu/SnAg interface, and (Cu, Ni)6Sn5 IMCs were found at the SnAg/Ni interface. However, Ag3Sn IMCs were not observed, even for longer aging times and higher temperatures. The growth of Cu3Sn IMCs at the Cu/SnAg interface was found to lead to the formation of Kirkendall voids inside the Cu3Sn IMCs and linked voids within the Cu3Sn/Cu column interfaces. These voids became more evident when the aging time and temperature increased. The contact resistance was found to be nearly unchanged after 2000 h at 125°C, but increases slightly at 150°C, and a number of Cu/SnAg joints failed after 2000 h. This failure was caused by a reduction in the contact area due to the formation of Kirkendall and linked voids at the Cu column/Cu3Sn IMC interface.  相似文献   

7.
Developing a lead-free solder alloy Sn-Bi-Ag-Cu by mechanical alloying   总被引:1,自引:0,他引:1  
A new lead free alloy, Sn-6Bi-2Ag-0.5Cu, has been developed by mechanical alloying and has great potential as a lead-free solder system. Initial trials on the manufacture of solder joints with this alloy revealed that a high quality bond with copper could be formed. Its melting range of 193.87°C to 209.88°C is slightly higher than that of eutectic tin-lead solder. Examination of the microstructure of the as-soldered joints revealed that it mainly consists of small bismuth (1 μm to 2 μm) and Ag3Sn (1 μm) particles finely dispersed in a nearly pure tin matrix with a small amount of η-Cu6Sn5 particles. The Cu-Sn intermetallic compound (IMC) layer formed at solder-copper interface is the η-Cu6Sn5 phase with grain size of 2 μm. The shear strength of the solder joint is higher than that of Sn-37Pb or Sn-3.5Ag. Under shear loading, fracture occurred at IMC layer-solder interface as well as in the bulk of solder.  相似文献   

8.
Formation of intermetallic compounds (IMCs) in solder joints is closely associated with the mechanical reliability of the system. Though internal voids formed in Ni/Sn solder joints are known to be related to the formation of Ni3Sn4 IMC, a detailed study on the mechanical reliability has not yet been reported. In this study, the mechanical reliability of Ni/Sn joints was investigated using two different soldering systems: Ni/Ag-Ag/Sn/Ni bilayers and Ni/Sn/Ag-Ag/Sn/Ni sandwich structures. The failure mode was found to be closely related to the formation and growth of an Ag3Sn phase. Filling of the voids with Ag3Sn IMC resulted in maximum shear strength, with a failure locus through Ni3Sn4 and Ag3Sn. However, formation of a large amount of Ag3Sn decreased the shear strength once again.  相似文献   

9.
Nano-sized, nonreacting, noncoarsening ZrO2 particles reinforced Sn-3.0 wt%Ag-0.5 wt%Cu composite solders were prepared by mechanically dispersing ZrO2 nano-particles into Sn-Ag-Cu solder. The interfacial morphology of unreinforced Sn-Ag-Cu solder and solder joints containing ZrO2 nano-particles with Au/Ni metallized Cu pads on ball grid array (BGA) substrates and the distribution of reinforcing particles were characterized metallographically. At their interfaces, a Sn-Ni-Cu intermetallic compound (IMC) layer was found in both unreinforced Sn-Ag-Cu and Sn-Ag-Cu solder joints containing ZrO2 nano-particles and the IMC layer thickness increased with the number of reflow cycles. In the solder ball region, AuSn4, Ag3Sn, Cu6Sn5 IMC particles and ZrO2 nano-particles were found to be uniformly distributed in the β-Sn matrix of Sn-Ag-Cu solder joints containing ZrO2 nano-particles, which resulted in an increase in the shear strength, due to a second phase dispersion strengthening mechanism. The fracture surface of unreinforced Sn-Ag-Cu solder joints exhibited a brittle fracture mode with a smooth surface while Sn-Ag-Cu solder joints containing ZrO2 nano-particles ductile failure characteristics with rough dimpled surfaces.  相似文献   

10.
In a previous study, a lead-free solder, Sn-6Bi-2Ag-0.5Cu, was developed by mechanical alloying. The alloy shows great potential as a lead-free solder system. In the present work, the microstructural evolution during thermal shock and aging was examined. In the as-soldered joints small bismuth (1 μm to 2 μm) and Ag3Sn (1 μm) particles were finely dispersed in a nearly pure tin matrix with a small amount of η-Cu6Sn5 phase in the bulk of solder. During thermal shock and aging microstructural evolution occurred with Cu-Sn intermetallic compound (IMC) layer growth at interface, bismuth phase coarsening and Ag3Sn phase coarsening. The microstructure of the solder appeared to be stable at high temperature. The shear strength of the present solder joint is higher than that of Sn-37Pb and Sn-3.5Ag solders. Shear failure occurred Cu-Sn IMC layer-solder interface and in the bulk of solder.  相似文献   

11.
A new bonding process using an Ag2O paste consisting of Ag2O particles mixed with a triethylene glycol reducing agent has been proposed as an alternative joining approach for microsoldering in electronics assembly, which currently uses Pb-rich, high-temperature solders. Ag nanoparticles were formed at approximately 130°C to 160°C through a reduction process, sintered to one another immediately, and bonded to a metal substrate. An Au-coated Cu specimen was successfully bonded using the Ag2O paste. The resulting joint exhibited superior strength compared with joints fabricated using conventional Pb-rich solders. To improve ion-migration tolerance, the Ag2O paste was mixed with Au and Pd microparticles to form sintered Ag-Au and Ag-Pd layers, respectively. The additions of Au and Pd improved the ion-migration tolerance of the joint. Regarding the mechanical properties of the joints, addition of secondary Au and Pd both resulted in decreased joint strength. To match the joint strength of conventional Pb-10Sn solder, the mixing ratios of Au and Pd were estimated to be limited to 16?vol.% and 7?vol.%, respectively. The electrical resistivities of the sintered layers consisting of 16?vol.% Au and 7?vol.% Pd were lower than that of Pb-10Sn solder. Thus, the additive fractions of Au and Pd to the Ag2O paste should be less than 16?vol.% and 7?vol.%, respectively, to avoid compromising the mechanical and electrical properties of the sintered layer relative to those of contemporary Pb-10Sn solder. Following the addition of Au and Pd to the paste, the ion-migration tolerances of the sintered layers were approximately 3 and 2 times higher than that of pure Ag, respectively. Thus, the addition of Au was found to improve the ion-migration tolerance of the sintered Ag layer more effectively and with less sacrifice of the mechanical and electrical properties of the sintered layer than the addition of Pd.  相似文献   

12.
In this work we compare the microstructures of intermetallic compounds (IMCs) in electrochemically stripped solder joints created by two different soldering methods (vapor phase soldering (VPS), and selective laser soldering with a CO2 laser). After the selective removal of the Sn phase with amperometry, the microstructure and structural composition of the IMC can be revealed in a detailed way, which is unlike any other previously published methods. The differences between the IMC microstructures of the technologically different solder joints were analyzed with optical microscopy and scanning electron microscopy (SEM). Energy dispersive spectroscopy (EDS) measurements were utilized to identify the different intermetallic phases (Ag3Sn, Cu6Sn5). Significant differences were observed in the IMC structures of solder joints prepared by different technologies.  相似文献   

13.
This study compares the high-Ag-content Sn-3Ag-0.5Cu with the low- Ag-content Sn-1Ag-0.5Cu solder alloy and the three quaternary solder alloys Sn-1Ag-0.5Cu-0.1Fe, Sn-1Ag-0.5Cu-0.3Fe, and Sn-1Ag-0.5Cu-0.5Fe to understand the beneficial effects of Fe on the microstructural stability, mechanical properties, and thermal behavior of the low-Ag-content Sn-1Ag-0.5Cu solder alloy. The results indicate that the Sn-3Ag-0.5Cu solder alloy possesses small primary β-Sn dendrites and wide interdendritic regions consisting of a large number of fine Ag3Sn intermetallic compound (IMC) particles. However, the Sn-1Ag-0.5Cu solder alloy possesses large primary β-Sn dendrites and narrow interdendritic regions of sparsely distributed Ag3Sn IMC particles. The Fe-bearing SAC105 solder alloys possess large primary β-Sn dendrites and narrow interdendritic regions of sparsely distributed Ag3Sn IMC particles containing a small amount of Fe. Moreover, the addition of Fe leads to the formation of large circular FeSn2 IMC particles located in the interdendritic regions. On the one hand, tensile tests indicate that the elastic modulus, yield strength, and ultimate tensile strength (UTS) increase with increasing Ag content. On the other hand, increasing the Ag content reduces the total elongation. The addition of Fe decreases the elastic modulus, yield strength, and UTS, while the total elongation is still maintained at the Sn-1Ag-0.5Cu level. The effect of aging on the mechanical behavior was studied. After 720 h and 24 h of aging at 100°C and 180°C, respectively, the Sn-1Ag-0.5Cu solder alloy experienced a large degradation in its mechanical properties after both of the aging conditions, whereas the mechanical properties of the Sn-3Ag-0.5Cu solder alloy degraded more dramatically after 24 h of aging at 180°C. However, the Fe-bearing SAC105 solder alloys exhibited only slight changes in their mechanical properties after both aging procedures. The inclusion of Fe in the Ag3Sn IMC particles suppresses their IMC coarsening, which stabilizes the mechanical properties of the Fe-bearing SAC105 solder alloys after aging. The results from differential scanning calorimetry (DSC) tests indicate that the addition of Fe has a negligible effect on the melting behavior. However, the addition of Fe significantly reduces the solidification onset temperature and consequently increases the degree of undercooling. In addition, fracture surface analysis indicates that the addition of Fe to the Sn-1Ag-0.5Cu alloy does not affect the mode of fracture, and all tested alloys exhibited large ductile dimples on the fracture surface.  相似文献   

14.
In the current research, trace rare earth (RE) element Y was incorporated into a promising lead-free solder, Sn3.8Ag0.7Cu, in an effort to improve the comprehensive properties of Sn3.8Ag0.7Cu solder. The range of Y content in Sn3.8Ag0.7Cu solder alloys varied from 0 wt.% to 1.0 wt.%. As an illustration of the advantage of Y doping, the melting temperature, wettability, mechanical properties, and microstructures of Sn3.8Ag0.7CuY solder were studied. Trace Y additions had little influence on the melting behavior, but the solder showed better wettability and mechanical properties, as well as finer microstructures, than found in Y-free Sn3.8Ag0.7Cu solder. The Sn3.8Ag0.7Cu0.15Y solder alloy exhibited the best comprehensive properties compared to other solders with different Y content. Furthermore, interfacial and microstructural studies were conducted on Sn3.8Ag0.7Cu0.15Y solder alloys, and notable changes in microstructure were found compared to the Y-free alloy. The thickness of an intermetallic compound layer (IML) was decreased during soldering, and the growth of the IML was suppressed during aging. At the same time, the growth of intermetallic compounds (IMCs) inside the solder was reduced. In particular, some bigger IMC plates were replaced by fine, granular IMCs.  相似文献   

15.
A rapidly solidified Sn-3.5Ag eutectic alloy produced by the melt-spinning technique was used as a sample in this research to investigate the microstructure, thermal properties, solder wettability, and inhibitory effect of Ag3Sn on Cu6Sn5 intermetallic compound (IMC). In addition, an as-cast Sn-3.5Ag solder was prepared as a reference. Rapidly solidified and as-cast Sn-3.5Ag alloys of the same size were soldered at 250°C for 1 s to observe their instant melting characteristics and for 3 s with different cooling methods to study the inhibitory effect of Ag3Sn on Cu6Sn5 IMC. Experimental techniques such as scanning electron microscopy, differential scanning calorimetry, and energy-dispersive spectrometry were used to observe and analyze the results of the study. It was found that rapidly solidified Sn-3.5Ag solder has more uniform microstructure, better wettability, and higher melting rate as compared with the as-cast material; Ag3Sn nanoparticles that formed in the rapidly solidified Sn-3.5Ag solder inhibited the growth of Cu6Sn5 IMC during aging significantly much strongly than in the as-cast material because their number in the rapidly solidified Sn-3.5Ag solder was greater than in the as-cast material with the same soldering process before aging. Among the various alternative lead-free solders, this study focused on comparison between rapidly solidified and as-cast solder alloys, with the former being observed to have better properties.  相似文献   

16.
Relationships between the microstructure of near-eutectic Sn-Ag-Cu Pb-free solder joints and room-temperature fatigue lifetimes were studied. Correlations between the lifetimes of single Sn grained, SAC205 solder joints with the orientation of the Sn grain, and with differences in Ag3Sn and Cu6Sn5 precipitate microstructures were sought. Correlations between the number of Sn grains and fatigue life were observed. Surprisingly, it was found that Ag3Sn precipitates were highly segregated from Cu6Sn5 precipitates on a length scale of approximately 20 μm. Furthermore, large (factor of two) variations of the Sn dendrite arm size were observed within given samples. Such variations in values of dendrite arm size within a single sample were much larger than observed variations of this parameter between individual samples. Few significant differences were observed in the average size of precipitates in different samples. Although effects of average precipitate microstructure on lifetimes were not clearly delineated, one sample showed an anomalously high number of the smallest size (30 nm to 50 nm) Ag3Sn precipitates, and this sample also exhibited a much longer lifetime than all the other samples. Thus, some evidence was presented that samples of particular orientations and precipitate microstructures can exhibit anomalous fatigue lifetimes.  相似文献   

17.
The effects of minimal rare earth (RE) element additions on the microstructure of Sn-Ag-Cu solder joint, especially the intermetallic compounds (IMCs), were investigated. The range of RE content in Sn-Ag-Cu alloys varied from 0 wt.% to 0.25 wt.%. Experimental results showed that IMCs could be dramatically repressed with the appropriate addition of RE, resulting in a fine microstructure. However, there existed an effective range for the RE addition. The best RE content was found to be 0.1 wt.% in the current study. In addition to the typical morphology of Ag3Sn and Cu6Sn5 IMCs, other types of IMCs that have irregular morphology and uncertain constituents were also observed. The IMCs with large plate shape mainly contained Ag and Sn, but the content of Ag was much lower than that of Ag3Sn. The cross sections of Cu6Sn5 IMCs whiskers showed various morphologies. Furthermore, some eutectic-like structures, including lamellar-, rod-, and needle-like phases, were observed. The morphology of eutectic-like structure was related to the RE content in solder alloys. When the content of RE is 0.1 wt.%, the needle-like phase was dominant, while the lamellar structure prevailed when the RE content was 0.05 wt.% or 0.25 wt.%. It is suggested that the morphology change of the eutectic-like structure directly affects the creep properties of the solder joint.  相似文献   

18.
Mechanical properties of intermetallic compound (IMC) phases in Pb-free solder joints were obtained using nanoindentation testing (NIT). The elastic modulus and hardness were determined for IMC phases associated with insitu FeSn particle reinforced and mechanically added, Cu particle-reinforced, composite solder joints. The IMC layers that formed around Cu particle reinforcement and at the Cu substrate/solder matrix interface were probed with NIT. Moduli and hardness values obtained by NIT revealed were noticeably higher for Cu-rich Cu3Sn than those of Cu6Sn5. The Ag3Sn platelets that formed during reflow were also examined for eutectic Sn-Ag solder column joints. The indentation modulus of Ag3Sn platelets was significantly lower than that of FeSn, SnCuNi, and CuSn IMCs. Indentation creep properties were assessed in localized microstructure regions of the as-cast, eutectic Sn-Ag solder. The stress exponent, n, associated with secondary creep differed widely depending on the microstructure feature probed by the indenter tip.  相似文献   

19.
《Microelectronics Reliability》2014,54(9-10):1856-1861
High power modules are still facing the challenges to increase their power output, increase the junction temperature, and increase their reliability in harsh conditions. Therefore this study is doing a detail analysis of the soldering joint between a direct copper bonded substrate and a high power IGBT made with the high lead solder alloy Pb92.5Sn5.0Ag2.5. The intermetallic phases and the microstructure of standard chip to substrate solder joint will be analysed and compared to deteriorated joints coming from modules which have undergone an active thermal cycling. As expected, the as soldered joint was clearly different than solder joints made for ball grid array or small components on PCBs. The as soldered joint shows no sign of Cu6Sn5 intermetallic layer, but instead shows the presence of Ag3Sn particles at the solder–chip interface. Furthermore, the failure mechanisms under active thermal cycling also seem to be different. There is no growth of intermetallic phases and no strong delamination of the device. Instead a large network of intermetallic particles (Ag3Sn) is produced during aging and seems to degrade the solder thermal properties.  相似文献   

20.
Temperature-induced solder joint fatigue is a main reliability concern for aerospace and military industries whose electronic equipment used in the field is required to remain functional under harsh loadings. Due to the RoHS directive which eventually will prevent lead from being utilized in electronic systems, there is a need for a better understanding of lead-free thermomechanical behavior when subjected to temperature variations. As solder joints mechanical properties are dependent of their microstructural characteristics, developing accurate solder joint fatigue models means to correctly capture the microstructural changes that undergo the solder alloy during thermal cycling. This study reports the Sn3.0Ag0.5Cu (SAC305) solder joints microstructural evolution during damaging temperature cycles. Electron BackScatter Diffraction (EBSD) analysis was conducted to assess the SAC305 microstructure corresponding to a specific damage level. Investigated microstructural features included the β-Sn grain size and crystallographic orientation, as well as the grain boundary misorientation and Ag3Sn intermetallic compound (IMC) size. As-reflowed and damaged components were also mechanically characterized using nanoindentation technique. The microstructural analysis of SAC305 solder joints prior to thermal cycling showed a highly textured microstructure characteristic of hexa-cyclic twinning with two β-Sn morphologies consisting of preferentially orientated macrograins known as Kara's beach ball, along with smaller interlaced grains. The main observation is that recrystallization systematically occurred in SAC305 solder joints during thermal cycling, creating a high population of misoriented grain boundaries leading to intergranular crack initiation and propagation in the high strain regions. The recrystallization process is accompanied with a progressive loss of crystallographic texture and twinning structure. Ag3Sn IMCs coalescence is another strong indicator of SAC305 solder damage since the bigger and more spaced the IMCs are the less dislocation pinning can prevent recrystallization from occurring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号