首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Materials Letters》2006,60(17-18):2110-2114
Nanoparticle zinc phosphate dihydrate was prepared by solid-state reaction at ambient temperature from Na3PO4·12H2O and ZnSO4·7H2O, and characterized by X-ray, Raman, FT-IR spectra and TEM. Thermochemical study was performed by a RD496-III microcalorimeter at 298.15 K. The results reveal that the obtained product is Zn3(PO4)2·2H2O with spherical shape and particle size is between 40–50 nm. The standard enthalpy value for above reaction is calculated as − 45.793 kJ·mol 1. The standard enthalpy of formation for zinc phosphate dihydrate is recommended as − 3788.607 kJ·mol 1.  相似文献   

2.
xLiFePO4·yLi3V2(PO4)3/C composite cathode materials were synthesized via a polyol process, using LiOH·H2O, Fe3(PO4)2·8H2O, V2O5 and H3PO4 as raw materials, citric acid and PEG as carbon sources, and TEG as both a solvent and a reductant. Structural and morphological characterizations of as-prepared materials were carried out by X-ray diffraction (XRD) as well as scanning electron microscopy (SEM), respectively. Furthermore, electrochemical properties of as-prepared materials were analyzed by charge–discharge tests, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). XRD results indicated that the composites consisting of an olivine phase of LiFePO4 and a monoclinic phase of Li3V2(PO4)3 are well-crystallized. It is found that the LF0.6P·LV0.4P/C composite exhibited better electrochemical performance than pristine LFP/C and LVP/C at 5 C and 10 C rate and delivered 126 mAh g?1 and 110 mAh g?1, respectively. The favorable particles morphology with less than 100 nm size and low extent agglomeration is believed as a factor. In addition, the co-existence of V3+-doped LiFePO4/C and Fe2+-doped Li3V2(PO4)3/C was supposed as another reason.  相似文献   

3.
Cuprous oxide (Cu2O) microcrystals with sea urchin-like morphologies were successfully prepared on the surface of hollow glass microspheres (HGMs) using sodium sulfite (Na2SO3) as the reducing agent and sodium acetate–acetic acid (NaAc–HAc) as buffer solution in copper sulfate (CuSO4) solution. The products were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), differential thermal-thermogravimetry (DTA-TG), and visible spectrophotometer. Based on the SEM images of the as-obtained samples, it was found that the HGMs played a crucial role in the formation of sea urchin-like Cu2O. Meanwhile, the stirring time was also important for coating process. The as-prepared sea urchin-like microcrystals are cubic phase Cu2O. The as-prepared products can be oxidized at 240 °C. The preliminary study on the photocatalytic behavior of the sea urchin-like Cu2O showed that the photodegradation efficiency of 40 mg/L methyl orange (MO) reached 95.15% within 30 min.  相似文献   

4.
Hydroxyapatite (HA, Ca10(PO4)6(OH)2) nanoparticles were synthesized using calcining calcium dihydrogenphosphate (Ca(H2PO4)2 · H2O), calcium hydroxide (Ca(OH)2), and polyethylene glycol (PEG) at 900 °C in an oxygen atmosphere. This one-step process yields HA nanoparticles with similar particle sizes (e.g., 50–80 nm) that are well-crystallized and non-aggregated. PEG is an important factor in controlling the particle size, crystal phase, and degree of aggregation in these HA particles. This conclusion is supported by results from a field-emission scanning electron microscope (FE-SEM), X-ray diffractometry (XRD), energy dispersive X-ray analysis (EDS), a high-resolution transmission electron microscope (HR-TEM), and dynamic light scattering (DLS).  相似文献   

5.
This study investigated the hydrothermal transformation of brushite (dicalcium phosphate dihydrate, DCPD, CaHPO4·2H2O) into octacalcium phosphate (OCP, Ca8(HPO4)2(PO4)4·5H2O) in seven different newly developed biomineralization media, all inspired from the commercial DMEM solutions, over the temperature range of 36.5 °C to 90 °C with aging times varying between 1 h and 6 days. DCPD powders used in this study were synthesized in our laboratory by using a wet-chemical technique. DCPD was found to transform into OCP in the Ca2+, Mg2+, Na+, K+, HCO3?, Cl? and H2PO4? containing aqueous biomineralization media in less than 72 h at 36.5 °C, without stirring. The same medium was able to convert DCPD into OCP in about 2 h at 75–80 °C, again without a need for stirring. Samples were characterized by using powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM).  相似文献   

6.
Oxidation of FeSO4 solution with initial pH in the range of 1.40–3.51 by Acidithiobacillus ferrooxidans LX5 cell at 26 °C and subsequent precipitation of resulting Fe(III) were investigated in the present study. Results showed that the oxidation rate of Fe(II) was around 1.2–3.9 mmol l? 1 h? 1. X-ray diffraction (XRD) indicated that the formed precipitates were composed of natrojarosite with schwertmannite when the initial pH was 3.51, while only schwertmannite was produced when initial pH was in the range of 1.60–3.44 and no precipitate occurred when initial pH  1.40. Scanning electron microscope (SEM) analyses showed that precipitates formed in solution with initial pH 3.51 were spherical particles of about 0.4 µm in diameter and had a smooth surface, whereas precipitates in solution with initial pH  3.44 were spherical particles of approximately 1.0 µm in diameter, having specific sea-urchin morphology. Specific surface area of the precipitates varied from 3.42 to 23.45 m2 g? 1. X-ray fluorescence analyses revealed that schwertmannite formed in solution with initial pH in the range of 2.00–3.44 had similar elemental composition and could be expressed as Fe8O8(OH)4.42(SO4)1.79, whereas Fe8O8(OH)4.36(SO4)1.82 and Fe8O8(OH)4.29(SO4)1.86 as its chemical formula when the initial pH was 1.80 and 1.60, respectively.  相似文献   

7.
Via a simple glycine-assisted hydrothermal route, large-scale 3D hierarchical Zn3(OH)2V2O7·2H2O microspheres have been fabricated. Their purity, crystalline phase, morphologies and thermal stability were characterized by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), Fourier transform IR (FTIR), scanning electron microscopy (SEM) and thermogravimetry-differential scanning calorimetry (TG-DSC). The SEM results indicate that the microspheres are self-assembled by numerous nanoflakes with mean thickness of 100 nm. Some factors influencing the morphologies of the Zn3(OH)2V2O7·2H2O micro-/nanostructures have been systematically investigated, as well as quantity of glycine and the reaction time. The possible mechanism of the crystal growth and assembled procedure were also proposed. The as-prepared Zn3(OH)2V2O7·2H2O can be transformed into Zn3(VO4)2 with the similar morphologies by calcination in air at 600 °C. Furthermore, the photoluminescent properties of both Zn3(OH)2V2O7·2H2O and Zn3(VO4)2 were studied and exhibited different spectra.  相似文献   

8.
Hydroxyapatite (Ca10(PO4)6(OH)2) is the most ubiquitous calcium phosphate phase used in implant coatings and more recently in gene/drug delivery applications due to its chemical stability under normal physiological conditions (37 °C, pH  7.5, 1 atm.). However, different calcium phosphate phases, such as brushite (CaH(PO4)?2(H2O)) and tricalcium phosphate (Ca3(PO4)2) which are thermodynamically unstable under physiological conditions are also being explored for biomedical applications. One way of stabilizing these phases under physiological conditions is to introduce magnesium to substitute for calcium in the brushite lattice. The role of magnesium as a stabilizing agent for synthesizing brushite under physiological conditions at room temperature has been studied. Chemical analysis, Fourier transform infrared spectroscopy and X-ray diffraction have also been conducted to validate the formation of magnesium substituted brushite under physiological conditions.  相似文献   

9.
Shibing Ni  Tao Li  Xuelin Yang 《Materials Letters》2011,65(17-18):2662-2664
Cobalt vanadium oxide hydroxide hydrate (Co3(OH)2V2O7·nH2O) nanosheets are successfully synthesized by a simple hydrothermal method. The composition of Co3(OH)2V2O7·nH2O is studied by thermal gravity (TG) analysis in N2 atmosphere and subsequent X-ray powder diffraction (XRD) characterization of the sample obtained via annealing Co3(OH)2V2O7·nH2O nanosheets in N2 atmosphere at 800 °C for 6 h. The results indicate that there are 1.7 water molecules in a Co3(OH)2V2O7·nH2O molecular formula. Electrochemical properties of Co3(OH)2V2O7·1.7H2O nanosheets as negative electrode of lithium ion batteries are studied by conventional charge/discharge test, which show an initial capacity of 730 mAh g?1 with steady plateau near 0.9 V at a current density of 0.05 mA cm?2.  相似文献   

10.
A new indium trimesate In12O(OH)12({OH}4,{H2O}5)[btc]6·≈31H2O, called MIL-96, (btc = 1,3,5-benzenetricarboxylate or trimesate species) was hydrothermally synthesized under mild condition (210 °C, 5 h) in the presence of trimethyl 1,3,5-benzenetricarboxylate in water and characterized by single-crystal X-ray diffraction technique. The MIL-96 (In) structure exhibits a three-dimensional metal-organic framework containing isolated trinuclear μ3-oxo-bridged indium clusters and infinite chains of InO4(OH)2 and InO2(OH)3(H2O) octahedra generating a hexagonal network based on 18-membered ring. The two types of indium entities are connected to each other through the trimesate species which induce corrugated chains of indium octahedra, linked via μ2-hydroxo bonds with the specific –cis–cis–trans– sequence. The 3D framework of MIL-96 reveals three kind of cavities (two of them have estimated  400 Å3 volumes), in which are encapsulated free water molecules. The latter species are removed upon heating at 150 °C.  相似文献   

11.
In this paper, we report on the low temperature solution reduction method employed in the synthesis of large quantities of nano/micro-sized bismuth (Bi) crystals with sodium hypophosphite (NaH2PO2·H2O) as reductant in acidic solutions. The achieved Bi crystals exhibited plate-like (100 nm in size and few nanometers in thickness) or polyhedral (500 nm in size) shapes. Bi nanocrystals transformed to octahedron-like Bi microcrystals only by prolonging the reaction time. The assembly and oriented growth should be the reason. To understand the growth mechanism, we also discussed the possible growth of the Bi nanocrystals exhibits influence of experimental parameters such as reaction time, NaH2PO2·H2O concentration, and pH value. The resulting Bi crystals were characterized by using scanning electron microscopy, X-ray powder diffraction and differential thermal analysis and thermogravimetry. Optical properties of the samples were studied by ultraviolet–visible spectroscopy.  相似文献   

12.
The Ag/calcium silicate nanocomposite with core-shell nanostructure has been successfully synthesized using Ag solution, Ca(NO3)2·4H2O and Na2SiO3·9H2O in ethanol/water mixed solvents at room temperature for 48 h. Ag solution was previously prepared by microwave-assisted method in ethylene glycol (EG) at 150 °C for 10 min. The nanocomposites consisted of Ag core and an amorphous calcium silicate shell. The XRD and EDS results confirmed that the product was the Ag/calcium silicate nanocomposite. The TEM micrographs indicated that the Ag/calcium silicate nanocomposite was core-shell nanoparticles. The effects of Ca(NO3)2·4H2O and Na2SiO3·9H2O concentration on the shells of Ag/calcium silicate nanocomposite were investigated. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and energy-dispersive X-ray spectra (EDS). This method is simple, fast and may be extended to the synthesis of the other kinds of core-shell nanocomposites.  相似文献   

13.
Nanocrystalline LaFeO3 was synthesized by calcining precursor La2(CO3)2(OH)2–Fe2O3?1.5H2O in air. XRD analysis showed that precursor dried at 80 °C was a mixture containing orthorhombic La2(CO3)2(OH)2 and amorphous Fe2O3?1.5H2O. Orthorhombic LaFeO3 with highly crystallization was obtained when La2(CO3)2(OH)2–Fe2O3?1.5H2O was calcined at 900 °C in air for 2 h. Magnetic characterization indicated that the calcined product at 900 °C behaved weak magnetic behavior at room temperature. The thermal process of La2(CO3)2(OH)2–Fe2O3?1.5H2O experienced five steps, which involves, at first, dehydration of 0.8 absorption water, then dehydration of 0.7 crystal water, decomposition of orthorhombic La2(CO3)2(OH)2 into orthorhombic LaCO3OH, reaction of two LaCO3OH into hexagonal La2O2CO3 and crystallization of tetragonal Fe2O3, at last, reaction of hexagonal La2O2CO3 with tetragonal Fe2O3 into orthorhombic LaFeO3. In the DTG curve, four DTG peaks indicated the precursor experienced mass loss of four steps.  相似文献   

14.
Bundle of CeO2 nanowires have been successfully synthesized by a simple hydrothermal process using Ce(NO3)3·6H2O as cerium source and NaH2PO4·2H2O as mineralizer, into which no surfactant or template was introduced. The synthesized nanowires were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), Raman spectroscopy and magnetization measurements. The XRD results indicated that CeO2 nanowires have fluorite structure. Magnetization measurements indicate that CeO2 nanowires exhibit room temperature ferromagnetism with remanent magnetization (Mr) and coercivity (HC) of about 7.44 × 10? 4 (emu/g) and 27.19 Oe, respectively, which may results due to the presence of defects in the CeO2 nanowires.  相似文献   

15.
《Materials Letters》2007,61(19-20):4062-4065
Homogeneous coatings were attained by electrochemical method in electrolytes containing Ca2+ and PO43− ions with Ca/P ratio being 1.67. SEM observation showed that the hydroxyapatite (HAp,Ca10(PO4)6(OH)2) crystals prepared with higher concentration electrolyte (4 × 10 2 M Ca2+) are ribbon-like with thickness of nanometer size, a morphology seldom reported previously. In an electrolyte of lower concentration (6 × 10 4 M Ca2+), the HAp crystals formed are rod-like with a hexagonal cross section and diameter of about 70–80 nm. XRD patterns and IR spectra confirmed that the coatings consist of HAp crystals. TEM micrographs and SAD indicated that the longitude direction for both ribbon-like and rod-like crystal is [002], and the flat surface of the ribbon is (110). HRTEM showed that the ribbon-like crystal is a mixture of HAp and octacalcium phosphate (OCP, Ca8H2(PO4)6.5H2O).  相似文献   

16.
The purpose of this study was to investigate the transformation of brushite (dicalcium phosphate dihydrate, DCPD, CaHPO4·2H2O) powders at 36.5 °C in DMEM (Dulbecco's Modified Eagle Medium) solutions. Two sets of brushite powders with different particle shapes were synthesized to use in the above DMEM study. The first of these brushite powders was prepared by using a method which consisted of stirring calcite (CaCO3) powders in a solution of ammonium dihydrogen phosphate (NH4H2PO4) from 6 to 60 min at room temperature. These powders were found to consist of dumbbells of water lily-shaped crystals. The second one of the brushite powders had the common flat-plate morphology. Both powders were separately tested in DMEM-immersion experiments. Monetite (DCPA, CaHPO4) powders were synthesized with a unique water lily morphology by heating the water lily-shaped brushite crystals at 200 °C for 2 h. Brushite powders were found to transform into octacalcium phosphate (OCP, Ca8(HPO4)2(PO4)4·5H2O) upon soaking in DMEM (Dulbecco's Modified Eagle Medium) solutions at 36.5 °C over a period of 24 h to 1 week. Brushite powders were known to transform into apatite when immersed in synthetic (simulated) body fluid (SBF) solutions. This study found that DMEM solutions are able to convert brushite into OCP, instead of apatite.  相似文献   

17.
Zinc oxide (ZnO) was synthesized using a microwave assisted hydrothermal (MAH) process based on chloride/urea/water solution and under 800 W irradiation for 5 min. In the bath, Zn2+ ions reacted with the complex carbonate and hydroxide ions to form zinc carbonate hydroxide hydrate (Zn4CO3(OH)6·H2O), and the conversion from Zn4CO3(OH)6·H2O to ZnO was synchronously achieved by a MAH process. The as-prepared ZnO has a sponge-like morphology. However, the initial sponge-like morphology of ZnO could change to a net-like structure after thermal treatment, and compact nano-scale ZnO particles were finally obtained when the period of thermal treatment increased to 30 min. Pure ZnO nanoparticles was obtained from calcination of loose sponge-like ZnO particles at 500 °C. The analysis of optical properties of these ZnO nanoparticles showed that the intensity of 393 nm emission increased with the calcination temperature because the defects were reduced and the crystallinity was improved.  相似文献   

18.
Na3Gd(PO4)2, Na3Gd0.94(PO4)2:0.06Tb3+ and Na3Gd0.94(PO4)2:0.06Eu3+ are prepared by solid-state reaction and their photoluminescence (PL) properties are investigated in the ultraviolet (UV) and vacuum ultraviolet (VUV) region. The obtained results show that Na3Gd0.94(PO4)2:0.06Tb3+ has an efficient emission under 147 nm excitation, but the emission efficiency of Na3Gd0.94(PO4)2:0.06Eu3+ is low under 147 nm excitation. We discuss the energy absorption and transfer process in the VUV region to solve the special phenomenon.  相似文献   

19.
Flower-like Ni3(NO3)2(OH)4 was successfully synthesized by a facile solvothermal method. The microstructure and surface morphology of prepared Ni3(NO3)2(OH)4 were physically characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and transmission electron microscope (TEM). The electrochemical properties studies were carried out using cyclic voltammetry (CV), chronopotentiometry technology and AC impedance spectroscopy, respectively. The results indicate that the flower-like structure has a profound impact on electrode performance at high discharge capacitance. A maximum specific capacitance of 2212.5 F g?1 at the current density of 5 mA could be achieved, suggesting its potential application in electrode material for secondary batteries and electrochemical capacitors. Furthermore, the effects of Ni(NO3)2·6H2O concentration and temperature on the microstructure and specific capacitance of prepared Ni3(NO3)2(OH)4 have also been systematically studied. The results show that flower-like structure can be formed when the concentration is appropriate, while the temperature has just little effect on its electrochemical properties.  相似文献   

20.
Ternary zinc–cobalt–copper alloys of wide range composition were deposited on to steel substrates from dilute metal sulphate bath. The bath consisted of 1–20 g dm−3 CuSO4·5H2O, 1–30 g dm−3 CoSO4·7H2O, 1–50 g dm−3 ZnSO4·7H2O, 20 g dm−3 Na2SO4 and 150–200 g dm−3 NH2CH2COOH. The effect of bath composition, current density and temperature on the cathodic potential, cathodic current efficiency and composition of the deposits were investigated. The codeposition of ZnCoCu alloys from these solutions can be classified as regular. Increasing current density enhances the rate of Zn deposition but suppresses that of Cu deposition. However, increasing the bath temperature favours Cu deposition. Co content in the deposits is hardly affected by changing these variables. Increasing Cu content in the bath or increasing the applied current density greatly improves the cathodic efficiency for the alloy deposition. X-ray diffraction studies showed that the deposits obtained at high current density (Zn-rich alloy) consisted of a cubic CuZn2 phase, while that obtained at high temperature (Cu-rich alloy) consisted of a face, centred cubic CuCo phase. The structure and morphology of the deposited alloys were characterised by anodic stripping and SEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号