首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of formation of the high density effective scintillation ceramics consisting of two compounds of the cubic symmetry, LuAG:Ce and Lu2O3 (LuAG:Ce + Lu2O3), are described. Powders of a novel material LuAG:Ce + Lu2O3 were synthesized by co-precipitation method. The introduction of Lu2O3 into LuAG:Ce was shown to increase the density of the ceramics obtained and modify its scintillation properties.  相似文献   

2.
Using the Taguchi method, the authors analyzed the optimum conditions for (Y3?xCex)Al5O12 (YAG:Ce) phosphor, which is prepared using the solid-state reaction method. The controllable factors used in this study consisted of the following: (1) the duration of milling, (2) the quantity of substitution, (3) the duration of sintering, and (4) the temperature of sintering. Under optimum conditions, a confirmation experiment was carried out, and the average photoluminescence (PL) intensity of YAG:Ce phosphor was found to be up to 270.84 (a.u.). The percentage contribution of each controllable factor was also determined. Most interestingly, the temperature of sintering is the most influential factor within current investigation range to the solid-state-prepared YAG:Ce phosphor, and its value of percentage contribution is up to 70.90%. Aside from this, through the optimum conditions, the average PL intensity of YAG:Ce phosphor can be substantially promoted from 193.88 (a.u.), the average PL intensity of YAG:Ce phosphor sintered at 1500 °C for 6 h that was usually used to sinter YAG:Ce phosphor.  相似文献   

3.
TiN coating on Y-α-sialon was accomplished by depositing TiO2 on their particle surfaces through controlled hydrolysis of TiCl4 and Ti(O-i-C3H7)4 and subsequent nitridation with NH3 gas at 1000 °C. TiN particles covering Y-α-sialon were about 20 nm in size. Spark plasma sintering (SPS) of TiN/Y-α-sialon particles produced composite ceramics with continuous TiN networks at 1400 °C, but with TiN grains isolated in elongated β-sialon grains at 1600 °C. The relative density and Vickers hardness of TiN/sialon ceramics SPSed at 1400–1600 °C containing 25 vol.% TiN were measured. The electrical resistivity was in a wide range of 10−4 to 100 Ω cm for the ceramics sintered at 1400 °C, but lowered to the order of magnitude of 10−1 and 105 Ω cm at higher temperatures ≥1500 °C. It was found that the complete transition to β-sialon increased the resistivity to 103 to 105 Ω cm, due to breaking up continuous TiN layers by elongated β-sialon grains.  相似文献   

4.
Si–C–Ti ceramics were synthesized by reactive pyrolysis of polycarbosilane (PCS) precursor filled with metal Ti powder. Pyrolysis of mixture with atomic ratio of Ti:Si through 3:1–3:2 was carried out in argon atmosphere at given temperature up to 1500 °C. The metal–precursor reactions, and phase evolution were studied using X-ray diffraction and scanning electron microscopy with EDX. The Ti3SiC2 phase was obtained firstly from reaction of PCS and Ti. Ti3SiC2 formation starts at 1300 °C and its amount increases significantly in a narrow temperature range between 1400 °C and 1500 °C. In addition, addition of CaF2 can promote the formation of Ti3SiC2 phase.  相似文献   

5.
The biodegradable hydroxyapatite (HA) was synthesized by hydrolysis and characterized using high temperature X-ray diffraction (HT-XRD), differential thermal analysis and thermogravimetry (DTA/TG), and scanning electron microscopy (SEM). The in situ phase transformation of the HA synthesized from CaHPO4·2H2O (DCPD) and CaCO3 with a Ca / P = 1.5 in 2.5 M NaOH(aq) at 75 °C for 1 h was investigated by HT-XRD between 25 and 1500 °C. The HA was crystallized at 600 °C and maintained as the major phase until 1400 °C. The HA steadily transformed to the α-tricalcium phosphate (α-TCP) which became the major phosphate phase at 1500 °C. At 700 °C, the minor CaO phase appeared and vanished at 1300 °C. The Na+ impurity from the hydrolysis process was responsible for the formation of the NaCaPO4 phase, which appeared above 800 °C and disappeared at 1200 °C.  相似文献   

6.
ZrO2–CeO2 mixed oxides were synthesized via sol–gel process. Thermal stability, structure and morphology of samples were investigated by powder X-ray diffraction, FT-Raman spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy. In this approach, the solvent composition and Zr/Ce molar ratio have great influences on the structure and morphology of final products. With decreasing water content in the mixed solvent, specific surface area of powders increased and the single tetragonal phase was obtained. Only when the volume ratio of water and ethanol and the Zr/Ce molar ratio were 1:1, tetragonal t″-Zr0.5Ce0.5O2 could be stabilized in powders at temperature as high as 1000 °C. Meanwhile, tetragonal (t′) and (t″) phases coexisted in Zr0.5Ce0.5O2 solid solution without peak splitting after calcination at 1100 °C, further transforming into cubic and tetragonal (t′) phases at 1200 °C. The effective activation energy for Zr0.5Ce0.5O2 nanocrystallite growth during annealing is about 5.24 ± 0.15 kJ/mol.  相似文献   

7.
Y-doped ultrafine AlN powders were synthesized by a carbothermal reduction nitridation (CRN) route from precursors of Al2O3, C and Y2O3 prepared by a sol–gel low temperature combustion technology. The Y dopant reacted with alumina and thus forming yttrium aluminate of AlYO3, Al3Y5O12 and Al2Y4O9, which formed a liquid at about 1400 °C and promoted the transformation of Al2O3 to AlN and the growth of AlN particles. Compared with the conventional solid CRN process, Y dopant reduced the synthesis temperature by 150 °C, and Al2O3 transformed to AlN completely at 1450 °C. The content of Y dopant had little effect on the synthesis temperature of AlN whereas it influenced the phase of Y compounds in the products. As the Y/Al molar ratio was in the range of 0.007648–0.022944, the particle sizes of Y-doped AlN powders synthesized at 1450 °C were 150–300 nm.  相似文献   

8.
0.3Li2MnO3·0.7LiNi0.5Mn0.5O2 composite cathode powders with a mixed-layer crystal structure comprising Li2MnO3 and LiNi0.5Mn0.5O2 phases are prepared by spray pyrolysis. The composition of the cathode powders is found to be Li1.19Ni0.39Mn0.61O2 by ICP analysis. At a constant current density of 30 mA g?1, the initial discharge capacities of the composite cathode powders post-treated at 700, 750, 800, and 850 °C are 177, 202, 215, and 212 mAh g?1, respectively. The discharge capacity of the composite cathode powders post-treated at 800 °C decreases from 215 mAh g?1 to 205 mAh g?1 by the 40th cycle, in which the capacity retention is 95%. The first cycle has a low Coulombic efficiency of 75%. However, in the subsequent cycles, the Coulombic efficiency is retained at nearly 100%. The dQ/dV curves show that Mn exists as Mn4+ in the sample. The Mn4+ ions in the cathode powders become increasingly active as the cycle number increases and participate in the electrochemical reaction.  相似文献   

9.
Novel biomaterials are of prime importance in tissue engineering. Here, we developed novel nanostructured Al2TiO5–Al2O3–TiO2 composite as a biomaterial for bone repair. Initially, nanocrystalline Al2O3–TiO2 composite powder was synthesized by a sol–gel process. The powder was cold compacted and sintered at 1300–1500 °C to develop nanostructured Al2TiO5–Al2O3–TiO2 composite. Nano features were retained in the sintered structures while the grains showed irregular morphology. The grain-growth and microcracking were prominent at higher sintering temperatures. X-ray diffraction peak intensity of β-Al2TiO5 increased with increasing temperature. β-Al2TiO5 content increased from 91.67% at 1300 °C to 98.83% at 1500 °C, according to Rietveld refinement. The density of β-Al2TiO5 sintered at 1300 °C, 1400 °C and 1500 °C were computed to be 3.668 g cm?3, 3.685 g cm?3 and 3.664 g cm?3, respectively.Nanocrystalline grains enhanced the flexural strength. The highest flexural strength of 43.2 MPa was achieved. Bioactivity and biomechanical properties were assessed in simulated body fluid. Electron microscopy confirmed the formation of apatite crystals on the surface of the nanocomposite. Spectroscopic analysis established the presence of Ca and P ions in the crystals. Results throw light on biocompatibility and bioactivity of β-Al2TiO5 phase, which has not been reported previously.  相似文献   

10.
In the present work, the carbothermal reduction method was employed to fabricate the AlN powders by utilizing the combustion synthesized precursor derived from the mixed solution comprised of an aluminum source (Al(NO3)3 or Al2(SO4)3 or AlCl3), glucose, nitric acid, and urea. Effects of aluminum source on the particle size and morphology of precursors as well as synthesized AlN powders were studied in detail. The size and morphology of precursors, derived from various aluminum sources, had exhibited significant differences. The precursor from Al(NO3)3 source had completed the nitridation reaction at 1500 °C in 2 h. However, the nitridation reactions of the precursors from Al2(SO4)3 or AlCl3 source furnished at increased temperature of 1550 °C in 2 h. Moreover, the AlN powders from various aluminum sources have been synthesized directly from γ-Al2O3 without γ-Al2O3 to α-Al2O3 phase transition. The AlN powders from Al(NO3)3, calcined at 1550 °C for 2 h, were comprised of well-distributed spherical particles with an average size of 80 nm. While the AlN powders from AlCl3 or Al2(SO4)3 consisted of heterogeneously distributed spherical particles ranging from 100 to 200 nm or from 80 to 150 nm, respectively.  相似文献   

11.
Yttria-neodymia double stabilized ZrO2-based nanocomposites with 40 vol% electrical conductive TiCN were fully densified by means of pulsed electric current sintering (PECS) in the 1400–1500 °C range. The Y2O3 stabilizer content was fixed at 1 mol% whereas the Nd2O3 co-stabilizer content was varied between 0.75 and 2 mol% in order to optimise the mechanical properties. The mechanical (Vickers hardness, fracture toughness and bending strength), electrical (electrical resistivity) and microstructural properties were investigated and the hydrothermal stability in steam at 200 °C was assessed.The nanocomposites with 1–1.75 mol% Nd2O3, PECS at 1400 or 1450 °C, have an excellent fracture toughness of 8 MPa m1/2, although the grain size of both ZrO2 and TiCN phases after densification is in the 100 ± 30 nm range. Moreover, the composites combine a hardness of about 13 GPa, a bending strength of 1.1–1.3 GPa with a low electrical resistivity (1.6–2.2 × 10?5 Ω m) allowing electrical discharge machining. The hydrothermal stability of the double stabilizer nanocomposites was higher than for yttria-stabilized ZrO2-based composites with the same overall stabilizer content.  相似文献   

12.
Scintillation properties of Pr3+-doped LuAG and YAG crystals were investigated and compared with those of Ce3+-doped ones. The highest L.Y.’s were observed with the longest shaping time 10 μs. They can reach up to ~16,000 ph/MeV or ~23,500 ph/MeV for LuAG:Pr and LuAG:Ce, respectively. Energy resolutions (FWHM) are a bit better with LuAG:Pr than those of LuAG:Ce, e.g. at 662 keV FWHM are around 6% and between 8–12%, respectively. There were observed no large changes in proportionality of Pr3+- or Ce3+-doped LuAG or YAG crystals but the best proportionality has YAP:Ce crystal. Pr3+- or Ce3+-doped LuAG crystals exhibit slow decay components in the time range 1.5–3.5 μs while those of YAG ones have shorter decay components between 0.3–1.7 μs.  相似文献   

13.
Pr3+-doped Gd2O3 phosphor powders were prepared by co-precipitation method. Their structures during heat-treatments were studied by XRD and IR methods. The pH was optimized to be 8 in the co-precipitation process and the hydroxide precursors were transformed into pure phase cubic Gd2O3 at 500 °C for 1 h. Optical properties of Pr:Gd2O3 phosphor powders were reported. The main emission bands are assigned to 1D2  3H4, 3P0  3H6, 3P0  3F2 transition of Pr3+ under excitation at 255 and 488 nm. The emission intensities increase with increasing sintering temperature. Concentration quenching appears as the Pr3+ doping-concentration up to 1 at.%.  相似文献   

14.
We demonstrated the first successful fabrication of a transparent Lu3NbO7 body by spark plasma sintering (SPS). First, Lu3NbO7 powder was synthesized by a solid-state reaction of Lu2O3 and Nb2O5 powders at 1473 K for 7.2 ks and was sintered by SPS at 1723 K for 2.7 ks. The transparent Lu3NbO7 body had a cubic defect-fluorite structure and uniform microstructure with an average grain size of 0.77 μm. The transmittance at 550 nm reached 68%.  相似文献   

15.
This paper reported a simple and rapid route to large-scale synthesis of nanostructured SiC powders using rice husk as the precursor. Rapid carbothermal reduction reactions were achieved in a 2.45 GHz microwave field in an argon atmosphere. The XRD patterns revealed that complete carbothermal reduction of silica was achieved at 1300 °C for 60 min or at 1500 °C for only 15 min by microwave heating, resulting in β-SiC formation. The FE-SEM images showed that the β-SiC powders were mixtures of particles and whiskers. The β-SiC particles had diameters of 60–130 nm and the β-SiC whiskers, which were several to tens of micrometers in length, had diameters of 110–170 nm. The β-SiC powder synthesized at 1500 °C for 15 min showed the highest BET surface area of 12.2 m2/g. Compared to the conventional heating method, the microwave heating method proved to be an efficient approach for synthesis of SiC in terms of energy and time saving, as well as for fabrication of nanostructured SiC.  相似文献   

16.
Nanocrystalline Zr1−xZnxO2−x+δ (x = 0, 0.20, 1.00) powders were synthesized by glycine nitrate process route and the Zr0.80Zn0.20O1.80+δ powders were calcined in the temperature range between 500 and 800 °C. An intense UV emission band centered at 382 nm with excitation at 292 nm has been observed in Zr0.80Zn0.20O1.80+δ powders calcined at 600 °C, and X-ray diffraction analysis indicates that the powders exhibit a single phase with cubic ZrO2 structure with the average grain size is about 7 nm. According to the results of photoluminescence and annealing experiments in different atmospheres, it can be proposed that the intense UV emission band is related to the defect states involving oxygen vacancies. Compared with pure ZrO2, the incorporation of Zn2+ ions enhances UV emission intensity. Our experimental results also show that photoluminescence intensity depends on the concentration of defects and the peak position is related to the crystal phase structure. The novel strong UV emission properties of this material may be very interesting for further application.  相似文献   

17.
Cubic copper ferrite CuFe2O4 nanopowders have been synthesized via a hydrothermal route using industrial wastes. The synthesis conditions were systematically studied using statistical design (Box–Behnken Program) and the optimum conditions were determined. The results revealed that single phase of cubic copper ferrite powders can be obtained at different temperatures from 100 to 200 °C for times from 12 to 36 h with pH values 8–12. The crystallite size of the produced powders was in the range between 24.6 and 51.5 nm. The produced copper ferrite powders were appeared as a homogeneous pseudo-cubic-like structure. A high saturation magnetization (Ms 83.7 emu/g) was achieved at hydrothermal temperature 200 °C for 24 h and pH 8. Photocatalytic degradation of the methylene blue dye using copper ferrite powders produced at different conditions was investigated. A good catalytic efficiency was 95.9% at hydrothermal temperature 200 °C for hydrothermal time 24 h at pH 12 due to high surface area (118.4 m2/g).  相似文献   

18.
We employed a high-energy ball mill for the synthesis of nanograined Ti55C45 powders starting from elemental Ti and C powders. The mechanically induced self-propagating reaction that occurred between the reactant materials was monitored via a gas atmosphere gas-temperature-monitoring system. A single phase of NaCl-type TiC was obtained after 5 h of ball milling. To decrease the powder and grain sizes, the material was subjected to further ball milling time. The powders obtained after 200 h of milling possessed spherical-like morphology with average particle and grain sizes of 45 μm and 4.2 nm, respectively. The end-products obtained after 200 h of ball milling time, were then consolidated into full dense compacts, using hot pressing and spark plasma sintering at 1500 and 34.5 MPa, with heating rates of 20 °C/min and 500 °C/min, respectively. Whereas hot pressing of the powders led to severe grain growth (~ 436 nm in diameter), the as-spark plasma sintered powders maintained their nanograined characteristics (~ 28 nm in diameter). The as-synthesized and as-consolidated powders were characterized, using X-ray diffraction, high-resolution electron microscopy, and scanning electron microscopy. The mechanical properties of the consolidated samples obtained via the hot pressing and spark plasma sintering techniques were characterized, using Vickers microhardness and non-destructive testing techniques. The Vickers hardness, Young's modulus, shear modulus and fracture toughness of as-spark plasma sintered samples were 32 GPa, 358 GPa, 151 GPa and 6.4 MPa·m1/2, respectively. The effects of the consolidation approach on the grain size and mechanical properties were investigated and are discussed.  相似文献   

19.
Temperature-dependence of Raman spectroscopy on LuBO3 structure was performed in order to obtain information on structural changes induced by temperature evolution. The stability of the calcite phase and low-temperature vaterite phase of LuBO3 were both evaluated. For the sample with low-temperature vaterite phase, a strong first-order phase transition occurred during 1000–1200 °C, as indicated by the behavior of the Raman modes: the Raman bands split and new bands appear. The transition was associated with the B–O bond being broken in the cyclic B3O9 groups at high temperature, forming an open B3O9 group consisting of BO4 and BO3. Moreover, the influence of In3+ content on the structural characteristics of LuBO3 was investigated. It was found that the calcite phase of LuBO3 can be stabilized up to 1550 °C at least when the n(In)/n(Lu + In) ratio was more than 20 at%. The crystal growth and characterizations of Lu1?xInxBO3:Ce materials deserve further investigation.  相似文献   

20.
The work describes results of Mn-doped YAlO3 (YAP) nanocrystalline materials synthesized by the solution combustion method using urea as a fuel. The materials were characterized by X-ray powder diffraction, scanning electron microscopy and luminescence techniques. The combustion synthesis method with codoping with Hf4+ ions allows to obtain highly efficient YAP:Mn2+ phosphor with negligible emission from Mn4+ ions that can be applicable for thermoluminescent dosimetry of ionizing radiation. Namely, the phosphor has a single dominating thermal glow peak at about 200 °C with the green emission near 530 nm related to Mn2+(Y) ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号