首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Titanium oxide thin films (1–4 μm) were deposited on the porous Hastelloy-X substrates using the pulsed – DC magnetron sputtering technique and characterized by X–ray diffraction (XRD) and scanning electron microscopy (SEM) methods. Firstly, the films were deposited at different distances between the magnetron and the substrate, as magnetron current and pressure in the deposition chamber were constant. The distance between the magnetron and the substrate was changed from 3 cm to 7 cm, and the deposition rate varied between 10.1 nm/min to 6.0 nm/min. Secondly, pressure influence for the deposition rate was investigated. The deposition rate decreased nearly 15% with the decrease of oxygen pressure from 1.3 to 6.0 Pa. Finally, the influence of the bias (applied to the substrate for the increase of deposition rate) on thin films phase and microstructure was investigated.The experimental results showed that formation of pure titanium oxide thin films was observed in all experimental cases. Only crystallite sizes and orientation were changed. The results showed that there is a possibility to change porosity and uniformity of the growing film by changing oxygen partial pressure during deposition or bias application to the substrate. The existence of columnar boundaries and nanocrystalline structure in the films was observed.  相似文献   

2.
In this work, we have presented a new route to produce pure ZnO and composite ZnO-CuO thin films. In the process we have started with pure ZnO thin films and ended up with CuO by doping Cu in various percentages, ranging from 0% to 100%. We have managed to attain crystal phases in all doping concentrations. All the produced thin films have been crystallized at the annealing temperatures of 600 and 700 °C for 6 h. The X-ray diffraction (XRD) spectra have been performed to see the formation of crystal phases of all pure ZnO and composite ZnO-CuO thin films. These give insight that the two crystal phases related to ZnO and CuO stayed together within the thin film matrices, which were produced in different doping concentrations, i.e. nZnO + mCuO (0  n, m  100%). The scanning electron microscopy (SEM) micrographs and UV–vis absorption spectra have also been taken to elucidate the structure and composition of the all films.  相似文献   

3.
This study deals with tailoring of the surface morphology, microstructure, and electrochemical properties of Sn thin films deposited by magnetron sputtering with different deposition rates. Scanning electron microscopy and atomic force microscopy are used to characterize the film surface morphology. Electrochemical properties of Sn thin film are measured and compared by cyclic voltammetry and charge–discharge cycle data at a constant current density. Sn thin film fabricated with a higher deposition rate exhibited an initial discharge capacity of 798 mAh g?1 but reduced to 94 mAh g?1 at 30th cycle. Film deposited with lower deposition rate delivered 770 mAh g?1 during 1st cycle with improved capacity retention of 521 mAh g?1 on 30th cycle. Comparison of electrochemical performances of these films has revealed important distinctions, which are associated with the surface morphology and hence on rate of deposition.  相似文献   

4.
In this work, sputtered TiC/amorphous C thin films have been developed in order to be applied as potential barrier coating for interfering of Ti ions from pure Ti or Ti alloy implants. Our experiments were based on magnetron sputtering method, because the vacuum deposition provides great flexibility for manipulating material chemistry and structure, leading to films and coatings with special properties. The films have been deposited on silicon (001) substrates with 300 nm thick oxidized silicon sublayer at 200 °C deposition temperature as model substrate. Transmission electron microscopy has been used for structural investigations. Thin films consisted of ~ 20 nm TiC columnar crystals embedded by 5 nm thin amorphous carbon matrix. MG63 osteoblast cells have been applied for in vitro study of TiC nanocomposites. The cell culture tests give strong evidence of thin films biocompatibility.  相似文献   

5.
Highly oriented zinc oxide thin films have been grown on quartz, Si (1 1 1) and sapphire substrates by pulsed laser deposition (PLD). The effect of temperature and substrate parameter on structural and optical properties of ZnO thin films has been characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), optical transmission spectra and PL spectra. The experimental results show that the best crystalline thin films grown on different substrate with hexagonal wurtzite structure were achieved at growth temperature 400–500 °C. The growth temperature of ZnO thin film deposited on Si (1 1 1) substrate is lower than that of sapphire and quartz. The band gaps are increasing from 3.2 to 3.31 eV for ZnO thin film fabricated on quartz substrate at growth temperature from 100 to 600 °C. The crystalline quality and UV emission of ZnO thin film grown on sapphire substrate are significantly higher than those of other ZnO thin films grown on different substrates.  相似文献   

6.
Bi2S3 thin films were grown by successive ionic layer adsorption and reaction method (SILAR) onto the glass substrates at room temperature. The as prepared thin film were annealed at 250 °C in air for 30 min. These films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrical measurement systems. The X-ray diffraction patterns reveal that Bi2S3 thin film have orthorhombic crystal structure. SEM images showed uniform deposition of the material over the entire glass substrate. The optical energy band gap observed to be decreased from 1.69 to 1.62 eV for as deposited and annealed films respectively. The IV measurement under dark and illumination condition (100 W) show annealed Bi2S3 thin film gives good photoresponse as compared to as deposited thin film and Bi2S3 thin film exhibits photoconductivity phenomena suggesting its useful in sensors device. The thermo-emf measurements of Bi2S3 thin films revealed n-type electrical conductivity.  相似文献   

7.
《Materials Research Bulletin》2003,38(14):1841-1849
Thin films of TaOx were deposited on Si(1 0 0) by radio-frequency magnetron sputtering at substrate temperatures of 25, 100, 200, 300, 400, and 500 °C. The properties of TaOx thin films deposited with different oxygen-to-argon gas ratios and substrate temperatures were evaluated. The results show that the films with lowest leakage current density were obtained at ambient temperature with an oxygen mixture ratio (OMR) of 60% and the oxygen-to-tantalum ratio has a minimum with increasing deposition substrate temperature. From the current–voltage (IV) characteristics of the TaOx thin films as a function of deposition substrate temperature, we found that the leakage current density in the TaOx thin films increases with increasing deposition substrate temperature. The higher leakage current density in the TaOx films is correlated to the oxygen deficiency in TaOx films and crystallization at higher deposition temperature.  相似文献   

8.
Indium tin oxide (ITO) thin films were deposited on glass substrates by RF sputtering system at different sputtering pressure (SP) (20–34 mTorr) and room temperature. The sputtering pressure effects on the deposition rate, electro-optical and structural properties of the as-deposited films were systematically investigated. The optimum sputtering pressure of 27 mTorr, giving a good compromise between electrical conductivity and optical transmittance was found to deposit films. The films were heat-treated in vacuum (200–450 °C) and their electro-optical and structural properties investigated with temperature. A criterion factor Q, which is the ratio between the normalized average transmission to normalized resistivity was defined. It has been observed that Q has its maximum value for heat treatment at 400 °C and the X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis proves the films have preferred crystal growth towards (2 2 2) direction and average size of grains are 35–40 nm.  相似文献   

9.
《Materials Letters》2006,60(9-10):1224-1228
Pure and 2 mol% Mn doped Ba0.6Sr0.4TiO3 (BST) thin films have been deposited on La0.67Sr0.33MnO3 (LSMO) coated single-crystal (001) oriented LaAlO3 substrates using pulsed-laser deposition technique. The bilayer films of BST and LSMO were epitaxially grown in pure single-oriented perovskite phases for both samples, and an enhanced crystallization effect in the BST film was obtained by the addition of Mn, which were confirmed by X-ray diffraction (XRD) and in situ reflective high energy electron diffraction (RHEED) analyses. The dielectric properties of the BST thin films were measured at 100 kHz and 300 K with a parallel-plate capacitor configuration. The results have revealed that an appropriate concentration acceptor doping is very effective to increase dielectric tunability, and to reduce loss tangent and leakage current of BST thin films. The figure-of-merit (FOM) factor value increases from 11 (undoped) to 40 (Mn doped) under an applied electric field of 200 kV/cm. The leakage current density of the BST thin films at a negative bias field of 200 kV/cm decreases from 2.5 × 10 4 A/cm2 to 1.1 × 10 6 A/cm2 by Mn doping. Furthermore, a scanning-tip microwave near-field microscope has been employed to study the local microwave dielectric properties of the BST thin films at 2.48 GHz. The Mn doped BST film is more homogeneous, demonstrating its more potential applications in tunable microwave devices.  相似文献   

10.
FePt multilayer films were deposited on Si(1 0 0) substrate with thermally grown SiO2 film and sputtered Ag underlayer at room temperature by dc magnetron sputtering and subsequently annealing in vacuum. Experimental results suggest that proper thickness of Ag underlayer and slightly rich of Fe content can effectively induce the (0 0 1) texture of FePt films. A Fe57.4Pt42.6 thin film on the 8 nm Ag underlayer exhibits a large perpendicular coercivity of 7.6 kOe with magnetic remanence close to 1.  相似文献   

11.
《Materials Letters》2007,61(8-9):1763-1766
ZnO films deposited on glass, quartz and Al on silicon mono-crystal Si (100) substrates by using the wire explosion technique were investigated by X-ray diffraction (XRD), UV–VIS spectroscopy, scanning electron (SEM) and atomic force microscopy (AFM) measurements. X-ray diffraction measurements have shown that ZnO films are mainly composed of (100), (002) and (101) orientation crystallites. The post-deposition thermal treatment at 600 °C temperature in air has shown that the composite of Zn/ZnO film was fully oxidized to ZnO film. The XRD spectra of the film deposited in oxygen atmosphere at room temperature present high intensity dominating peak at 2h = 36, 32° corresponding to the (101) ZnO diffraction peak. The small fraction of the film (7%) corresponds to the (002) peak intensity at 2h = 34, 42°. This result indicates the good crystal quality of the film and hexagonal wurtzite-type structure deposited by zinc wire explosion. The optical absorption spectra shows the bands at 374, 373 and 371 nm corresponding to deposition conditions. The SEM analysis shows that ZnO films presented different morphologies from fractal network to porous films depending on deposition conditions. AFM analysis revealed the grain size ranges from 50 nm to 500 nm. The nanoneedles up to 300 nm in length were found as typical structures in the film. It was demonstrated that the wire explosion technique is a feasible method to produce ZnO crystalline thin films and nanostructures.  相似文献   

12.
《Materials Research Bulletin》2004,39(7-8):993-1003
Indium tin oxide thin films were deposited at room temperature by RF magnetron sputtering, under different pressures, and annealed in vacuum (10−6 Torr) in the 473–573 K temperature range. The microstructure of the films was analyzed in order to investigate its dependence on deposition pressure and annealing temperature. A correlation between microstructure and electro-optical properties was also established. Films produced at low pressures are crystalline and have higher conductivity than films deposited at high pressures. Films produced at high pressures are amorphous, but can be crystallized by annealing. With the increase in crystallinity, shifts of the absorption and plasma resonance edges to shorter wavelengths, attributed to an increase in carrier concentration, were observed at the transmittance spectra.  相似文献   

13.
Zinc oxide thin films have been obtained by pulsed laser ablation of a ZnO target in O2 ambient at a pressure of 0.13 Pa using a pulsed Nd:YAG laser. ZnO thin films deposited on Si (1 1 1) substrates were treated at annealing temperatures from 400 °C up to 800 °C after deposition. The structural and optical properties of deposited thin films have been characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, photoluminescence spectra, resistivity and IR absorption spectra. The results show that the obtained thin films possess good single crystalline with hexagonal structure at annealing temperature 600 °C. Two emission peaks have been observed in photoluminescence spectra. As the post-annealing temperature increase, the UV emission peaks at 368 nm is improved and the intensity of blue emission at 462 nm decreases, which corresponds to the increasing of the optical quality of ZnO film and the decreasing of Zn interstitial defect, respectively. The best optical quality for ZnO thin films emerge at post-annealing temperature 600 °C in our experiment. The measurement of resistivity also proves the decrease of defects of ZnO films. The IR absorption spectra of sample show the typical Zn–O bond bending vibration absorption at wavenumber 418 cm−1.  相似文献   

14.
We investigated the effect of Al-doped zinc oxide (AZO) films with different thicknesses deposited onto periodic cone-shaped GaAs subwavelength grating (SWG) structures on their physical properties. As the AZO deposition time was increased, the surface morphology of AZO deposited GaAs SWGs was changed. These structures exhibited the surface reflection of <~6.8% at 300–1200 nm because of their effective graded index distribution between air and the GaAs substrate via the AZO deposited GaAs SWGs, producing a lowest average reflectance of ~2.1% at 40 min of deposition time. With increasing the deposition time, the crystallinity of the AZO films deposited on GaAs SWGs was enhanced, which leaded to the decrease of the effective resistivity up to ~1.55 × 10?3 Ω-cm at 100 min. The wetting behavior of a water droplet on the surface of samples was also studied.  相似文献   

15.
《Thin solid films》2006,515(2):439-443
Titanium films of 90 nm thickness were deposited under UHV condition at different deposition rates, ranging from 0.3 to 10.2 Å s 1, at room temperature on glass and Mo substrates at two incidence angles of 8.5° and 45°. The samples were analyzed using XRD and AFM techniques. The grain sizes were obtained from AFM images, while the crystallite sizes and preferred orientation of the films were obtained from XRD profiles. Results show that Ti/glass films at 8.5° angle of incidence show (002) preferred orientation, while at 45° incidence angle, at lower deposition rates, films show an almost amorphous structure, which develops to a strong (002) preferred orientation for deposition rate of 1.6 Å s 1, and again at much higher deposition rate of 10.2 Å s 1 it changes to an amorphous structure. Ti/Mo films deposited at 45° incidence angle showed (101) preferred orientation.  相似文献   

16.
Here we report the influence of Sb doping on the structural and optical properties of Zn1−xSbxSe (0  x  0.15) thin films prepared by thermal evaporation technique on glass substrate. Various characterization techniques such as X-ray diffraction (XRD), EDS, Raman spectroscopy and spectroscopic ellipsometer are employed to assess the structural and optical properties of the deposited films. XRD analysis reveals the formation of polycrystalline cubic structure having preferred growth orientation along (1 1 1) plane without any evidence of secondary phases. Crystallographic parameters like grain size, micro strain, dislocation density, number of crystallites per unit area and texture coefficient point out the structural modification in ZnSe films with Sb inclusion. Raman analysis shows the existence of three 1LO, 2LO and 3LO phonon modes at 251, 511 and 745 cm−1 in pure ZnSe while 3LO mode disappears by the incorporation of Sb atoms in ZnSe matrix. Increase in FWHM of Raman peaks with Sb concentration also indicates the change in crystalline quality of ZnSe films which is in accordance with our XRD results. Spectroscopic ellipsometry results demonstrate a decreasing trend for the optical band gap energy (from 2.61 eV to 1.81 eV) with increasing Sb content.  相似文献   

17.
《Materials Research Bulletin》2013,48(11):4486-4490
Highly infrared transparent conductive ruthenium doped yttrium oxide (RYO) films were deposited on zinc sulfide and glass substrates by reactive magnetron sputtering. The structural, optical, and electrical properties of the films as a function of growth temperature were studied. It is shown that the sputtered RYO thin films are amorphous and smooth surface is obtained. The infrared transmittance of the films increases with increasing the growth temperature. RYO films maintain greater than ∼65% transmittance over a wide wavelength range from 2.5 μm to 12 μm and the highest transmittance value reaches 73.3% at ∼10 μm. With increasing growth temperature, the resistivity changed in a wide range and lowest resistivity of about 3.36 × 10−3 Ω cm is obtained at room temperature. The RYO thin films with high conductivity and transparency in IR spectral range would be suitable for infrared optical and electromagnetic shielding devices.  相似文献   

18.
TiO2 and TiO2:Nd thin films were deposited using reactive magnetron sputtering process from mosaic Ti–Nd targets with various Nd concentration. The thin films were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and spectroscopic techniques. Photoluminescence (PL) in the near infrared obtained upon 514.5 nm excitation was also examined. The relationship between the Nd concentration, structural, optical and photoluminescence properties of prepared thin films was investigated and discussed. XRD and TEM measurements showed that an increase in the Nd concentration in the thin films hinders the crystal growth in the deposited coatings. Depending on the Nd amount in the thin films, TiO2 with the rutile, mixed rutile–amorphous or amorphous phase was obtained. Transmittance measurements revealed that addition of Nd dopant to titania matrix did not deteriorate optical transparency of the coatings, however it influenced on the position of the fundamental absorption edge and therefore on the width of optical band gap energy. All TiO2:Nd thin films exhibited PL emission that occurred at ca. 0.91, 1.09 and 1.38 μm. Finally, results obtained for deposited coatings showed that titania with the rutile structure and 1.0 at.% of Nd was the most efficient in VIS to NIR photon conversion.  相似文献   

19.
An ammonia-free chemical-bath deposition was used to obtain CdSe thin films on glass substrate. The materials used in the chemical bath were cadmium chloride complexed with sodium citrate and sodium selenosulphate. The preparation conditions, especially the starting solution characteristics, such as concentration of dissolved materials, temperature, pH value as well as deposition time and immersion cycles were optimized to obtain homogeneous stoichiometric films with good adherence to the glass substrate. The films thickness was in the range of 400–500 nm with a growing time of 4 h. The material obtained was characterized by optical absorption, SEM with the energy dispersive X-ray analysis (EDS) and X-ray diffraction. The films obtained at bath temperatures of 70 and 80 °C had the hexagonal structure (of wurtzite type), with crystallite size of about 20 nm. Room temperature deposition results in films with the cubic structure and crystallite size of about 4 nm. From optical transmission data, an energy gap equal to 1.88 eV was found. The material is interesting for applications in hybrid systems for solar energy conversion.  相似文献   

20.
Ultrathin bismuth titanate films (Bi2Ti2O7, 5–25 nm) are deposited onto SiO2/Si substrates by aqueous chemical solution deposition and their evolution during annealing is studied. The films crystallize into a preferentially oriented, pure pyrochlore phase between 500 and 700 °C, depending on the film thickness and the total thermal budget. Crystallization causes a strong increase of surface roughness compared to amorphous films. An increase of the interfacial layer thickness is observed after anneal at 600 °C, together with intermixing of bismuth with the substrate as shown by TEM-EDX. The band gap was determined to be ~3 eV from photoconductivity measurements and high dielectric constants between 30 and 130 were determined from capacitance voltage measurements, depending on the processing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号