首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel forward (direct) osmosis (FO) desalination process is presented. The process uses an ammonium bicarbonate draw solution to extract water from a saline feed water across a semi-permeable polymeric membrane. Very large osmotic pressures generated by the highly soluble ammonium bicarbonate draw solution yield high water fluxes and can result in very high feed water recoveries. Upon moderate heating, ammonium bicarbonate decomposes into ammonia and carbon dioxide gases that can be separated and recycled as draw solutes, leaving the fresh product water. Experiments with a laboratory-scale FO unit utilizing a flat sheet cellulose tri-acetate membrane demonstrated high product water flux and relatively high salt rejection. The results further revealed that reverse osmosis (RO) membranes are not suitable for the FO process because of relatively low product water fluxes attributed to severe internal concentration polarization in the porous support and fabric layers of the RO membrane.  相似文献   

2.
正向渗透是一项新型的利用半透膜两侧溶液渗透压差作为驱动力的膜分离技术。文章介绍了正向渗透膜分离技术的原理和影响因素,对其在各个领域(包括海水淡化、废水处理、橙汁浓缩、水袋)的研究进展进行了综述。现有的研究表明,可用于正向渗透工艺的膜不同于常规的反渗透膜,需要从膜结构开发适合的膜组件;采用NH3和CO2制备提取液是目前研究中具有应用前途的方式之一,具有产水率高且易于分离浓缩的优点。  相似文献   

3.
Recent advances in membrane technologies have enhanced the viability of water treatment strategies that employ semipermeable barriers. Forward osmosis (FO), which exploits the natural osmotic pressure gradient between a “draw” solution and a “feed” solution to produce potable water, offers a low‐energy, low‐cost alternative to more conventional treatment methods. Surfactants, because of their tendencies to aggregate into micelles and to adsorb at interfaces, provide intriguing osmotic pressures and offer exploitable properties by which draw solutions can be regenerated. The effectiveness of surfactant‐based FO using cellulose triacetate membranes has been assessed in terms of water flux and reverse surfactant diffusion using cetylpyridinium chloride, sodium dodecylsulfate, and Triton X‐100. The ratios of water flux to surfactant flux exceeded 600 L mol?1 for all surfactants studied. Surfactant recoveries of over 99 % were achieved by ultrafiltration using regenerated cellulose membranes.  相似文献   

4.
正渗透过程中汲取质反向渗透研究进展   总被引:1,自引:0,他引:1  
谢朋  张忠国  孙涛  吴月  吴秋燕  李继定  李珊 《化工进展》2015,34(10):3540-3550
正渗透(FO)作为一种浓度驱动的膜技术,因其膜污染轻、能耗低和回收率高等优点而逐渐成为膜技术领域的研究热点之一。汲取质的反向渗透是正渗透过程中不可忽视的现象,但其研究相对比较滞后。本文主要介绍了汲取质反渗模型的研究进展,分析了渗透压差、膜表面流速、膜结构与膜材料、温度、汲取质种类、膜取向、离子水力半径等因素对汲取质反向渗透的影响情况,并发现汲取质的反向渗透通量可由其浓度或汲取液渗透压的一元多项式表达。总体而言,FO模式的汲取质反渗模型经过不断发展已相对比较完善,而压力阻尼渗透(PRO)模式的反渗模型则缺陷较大,有待进一步研究;此外,关于汲取质反渗过程影响因素及其影响机制的研究对于汲取质、膜材料的选择与开发,以及正渗透过程的优化均具有重要的指导作用,因此会引起越来越多的关注。  相似文献   

5.
Membrane hydrophilicity influences the transport of water through the membrane in osmotically driven separations such as forward osmosis. In this paper, we coated the polysulfone support layer of two types of commercially available reverse osmosis membranes (brackish water and seawater) with hydrophilic polyvinyl alcohol (PVA). The aim of this was to increase the support layer hydrophilicity and, correspondingly, the rate of water transport through the membrane. Previous work with polydopamine coatings of the polysulfone support of reverse osmosis membranes has yielded promising results. In this work, we explore more readily available materials. Specifically, we studied the effects of two different PVA crosslinking agents – maleic acid and glutaraldehyde – on the resultant membrane properties and osmotic performance. For seawater membranes we found that PVA crosslinked to a limited degree with maleic acid creates a significant improvement in water flux in RO and FO systems, as compared to membranes with PVA crosslinked by glutaraldehyde. However, brackish water membranes did not have comparably significant changes in membrane performance. We conclude that the smaller pores of the brackish water membrane become clogged, and this effect is magnified by the lack of fractional free volume available within PVA that is highly crosslinked with glutaraldehyde.  相似文献   

6.
Forward osmosis (FO), as one of the emerging desalination technologies, has the potential to produce freshwater from a variety of water sources by utilizing the osmotic pressure gradient across a semi-permeable membrane. Drawsolution, as an essential component of any FO process, can extract watermolecules fromseawater orwastewater. An ideal draw solution should meet three essential requirements, namely high osmotic pressure, low reverse flux, and facile regeneration mechanism. The selection of proper draw solutes is especially critical for an energy-efficient FO process since the energy consumption mostly arises from the separation or regeneration of the draw solution. Recently, we developed a few multi-functional FO draw solutes, mainly aiming to enhance the FO water flux and to explore facile re-concentration methods. This review summarizes these draw solutes, including Na+-functionalized carbon quantum dots, thermoresponsive copolymers, hydrophilic magnetic nanoparticles, and thermoresponsive magnetic nanoparticles.  相似文献   

7.
正渗透水处理关键技术研究进展   总被引:1,自引:0,他引:1  
正渗透是一种新型的膜分离技术,其分离的驱动力来源于原料液和汲取液之间自然存在的渗透压差,近年来正渗透技术已在国际上得到广泛关注。简述了基于此技术的正渗透水处理过程的基本原理,指出了这种新型水处理过程的关键技术——正渗透膜和汲取液,根据各自的技术特点对其进行分类概述,并从实验室基础研究和技术的商业化进程两方面介绍了这两项关键技术取得的最新研究进展。从水通量角度对不同体系进行了简单比较,分析了各材料和方法的优缺点,并对它们的应用前景进行了展望。  相似文献   

8.
Desalination of sea water by direct osmosis   总被引:1,自引:0,他引:1  
Sea water can be desalinated by direct osmosis across a cellulose acetate membrane by using the osmotic pressure of a hypertonic glucose solution as the energy source. The resulting glucose solution is potable. This may prove useful for an emergency water supply in lifeboats.  相似文献   

9.
In this study, we discuss the preparations of cellulosic membranes from cellulose acetate (CA), cellulose triacetate (CTA) and cellulose acetate blend (CAB) [blending of CA and CTA] systems and their potential for concentration of simulated ammonium-diuranate (ADU) effluent solution (only uranium and ammonium nitrate) by FO. The membranes are prepared using casting solution of polymers in mixed solvent systems with gelling in ice-cold water followed by annealing in 80°C hot water. Prepared membranes are characterized in terms of separation performance (tested under brackish water reverse osmosis test condition), water contact angle and surface average roughness. The performance of the membranes are evaluated in terms of volume reduction factor using solution of 40,000 ppm of NH4NO3 and 20 ppm uranium as feed and 320000ppm of NH4NO3 as draw solution. It is found that the volume reduction factor increases in the order of CTA<CAB<CA membranes. The effect of different draw solutions on volume reduction for the same system using CA membrane is also evaluated. Almost no leaching of uranium is found to the draw solution side for all the membranes. Possibility of using the FO process in a simpler way (as membrane pouch) to concentrate this simulated ADU filtered solution has been ascertained.  相似文献   

10.
正渗透是以渗透压差为驱动力的新型膜分离过程。采用水流分布较佳的膜池结构,研究了膜朝向、流动方式对正渗透水通量性能的影响,结果表明PRO模式(当膜的活性层朝向驱动液时)的水通量明显高于FO模式(当膜的活性层朝向原料液时),但其衰减程度较大;在溶液浓度差相同的条件下,逆流操作更利于水通量的提高。针对FO模式和逆流条件,探讨了溶液温度对水通量和反向盐通量的影响,结果表明:膜两侧溶液温度同步升高时,正渗透过程的水通量和反向盐通量均增加,且水通量的增加幅度大于反向盐通量;单侧增加溶液的温度时,驱动液侧温度升高对水通量性能的提升效果优于原料液侧。综合考虑过程能耗和系统性能,认为单独升高驱动液温度更具实用价值。  相似文献   

11.
The development of suitable draw solutes for forward osmosis (FO) process is a big obstacle on the way of its real industrialization. In this work, a novel draw solute, ethylenediamine tetrapropionic (EDTP) acid (salt) is developed for FO application. The successful synthesis is confirmed by Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and high resolution mass spectrum. By optimizing the pH of EDTP solution, its composition is varied, and therefore, its water solubility and osmotic pressure are effectively improved. The effects of EDTP concentration on the osmotic pressure and FO performance are also investigated. Its outstanding osmotic pressure and big molecular size result in a high water flux of 22.69 LMH and a low salt flux of 0.32 gMH with 0.8 M EDTP draw solution (water as the feed solution, pressure retarded osmosis mode). The good stability and easy recovery by nanofiltration of EDTP solution also demonstrate its great potential as the draw solute for future FO applications. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1309–1321, 2015  相似文献   

12.
钟铭  尤世界  王秀蘅  钟溢健 《化工学报》2012,63(10):3143-3151
正向渗透(FO)是一种以溶液自身渗透压作为推动力的膜分离技术。温度对溶液、膜的性质以及溶液与膜之间的相互作用有很大影响,进而影响FO的水通量。利用数值模拟与试验研究了温度对FO性能的影响。结果表明,当膜两侧等温时,FO水通量随着温度的升高而增大;当膜两侧不等温时,原液(FS)一侧温度的影响比提取液(DS)一侧更大,主要是因为温度升高降低了溶液黏度,强化了过膜扩散过程,而温度对DS渗透压的影响不明显。在不同温度条件下,FO水通量和热通量随流量的增大而增大,主要是由于流速的增大压缩膜表面的流体边界层,强化了传质和传热过程。  相似文献   

13.
正渗透膜分离的研究进展   总被引:2,自引:0,他引:2  
正渗透是浓度驱动的膜技术,是指水通过选择性渗透膜从高水化学势区域向低水化学势区域的传递过程。本文介绍了正渗透的基本构成(驱动力、汲取液和正渗透膜材料),指出膜两侧的浓差极化是水通量性能的最大障碍,采用通量模型说明了膜在两种放置方向下存在的内浓差极化和外浓差极化,内浓差极化对驱动力的减小起着重要的作用;论述了膜材料、原料液浓度、汲取液浓度对正渗透和压力延迟渗透水通量的影响;此外,评述了正渗透过程的膜污染和能耗。  相似文献   

14.
正渗透—纳滤耦合处理苦咸水脱盐工艺   总被引:1,自引:0,他引:1  
时强  张乾  阮国岭  初喜章 《净水技术》2012,31(5):25-28,58
以2 000 mg/L氯化钠模拟苦咸水,采用二价无机盐作为汲取液,研究了正渗透淡化苦咸水时的水通量;通过软件计算和试验研究了不同组成汲取液的纳滤性能,并且设计了二级纳滤系统用于汲取液的回收。结果表明:相同浓度时硫酸镁汲取液正渗透水通量最低,而氯化镁汲取液水通量最高;相反在纳滤过程中,硫酸镁汲取液性能最佳,氯化镁最差;稀释硫酸钠汲取液浓度为30 g/L时,二级纳滤过程可以将汲取液浓缩至初始浓度(60 g/L),并制得浓度低于500 mg/L的产水。  相似文献   

15.
Forward osmosis (FO), as an emerging technology, is influenced by different factors such as operating conditions, module characteristics, and membrane properties. The general aim of this study was to develop a suitable (flexible, comprehensive, and convenient to use) computational tool which is able to simulate osmosis through an asymmetric membrane oriented in pressure retarded osmosis (PRO) mode in a wide variety of scenarios. For this purpose, an agent-based model was created in NetLogo platform, which is an easy-to-use application environment with graphical visualization abilities and well suited for modeling a complex system evolving over time. The simulation results were validated with empirical data obtained from literature and a great agreement was observed. The effect of various parameters on process performance was investigated in terms of temperature, cross-flow velocity, length of the module, pure water permeability coefficient, and structural parameter of the membrane. Results demonstrated that the increase in all parameters, except structural parameter of the membrane and the length of module led to the increase of average water flux. Moreover, nine different draw solutes were selected in order to assess the influence of net bulk osmotic pressure difference between the draw solution (DS) and feed solution (FS) (known as the driving force of FO process) on water flux. Based on the findings of this paper, the performance of FO process (PRO mode) can be efficiently evaluated using the NetLogo platform.  相似文献   

16.
Cellulose acetate (CA) is a low cost and readily available material widely used in forward osmosis (FO) membranes. However, the performance of pure CA membranes is not good enough in salt separation and the traditional modification methods are generally multistep and difficult to control. In this paper, we reported high performance cellulose acetate (CA) composite forward osmosis (FO) membranes modified with polyvinyl alcohol (PVA) and polydopamine (PDA). PVA was first cross-linked onto the surface of CA membranes, and then PDA was coated with a rapid deposition method. The membranes were characterized with respect to membrane chemistry (FTIR and XPS), surface properties comprising wettability (by water contact angle), and osmosis performance. The modified membrane coated by PVA and PDA shown better hydrophilicity and exhibited 16.72 LMH osmotic water flux and 0.14 mMH reverse solute flux with DI water as feed solution and 2.0 M NaCl as draw solution and active layer facing the feed solution. This simple and highly effective modification method makes it as an excellent candidate for further exploration for FO.  相似文献   

17.
正渗透原理及分离传质过程浅析   总被引:6,自引:3,他引:3       下载免费PDF全文
正渗透是一种新兴的膜分离技术,因其低能耗、抗污染、对污染物截留能力广等的潜力,在脱盐、废水处理、农业和电力等领域的应用前景备受瞩目。本文介绍了正渗透概念和原理,通过正渗透传递过程的现象学模型,对浓差极差极化与质量传递的关系作出分析,提出了强化正渗透传质过程的一些建议。  相似文献   

18.
《分离科学与技术》2012,47(4):551-560
Desalination is a separation process used to reduce the amount of dissolved salts in seawater or brackish water to a usable or potable level by distillation, multiple effect vapor compression, evaporation, or by membrane processes such as electro-dialysis reversal, nano-filtration, and reverse osmosis (RO). RO is the most widely used desalination process. Recent advances in RO technology have led to more efficient separation and now is the most cost-effective process to operate. The performance of the Reverse Osmosis process is dependent on the concentration of dissolved solids in the feed-water, feed-water pressure, and the membrane strength to withstand system pressure, membrane solute rejection, membrane fouling characteristics, and the required permeate solute concentration. RO is a promising tool that uses cellulose acetate (or) polyamide membrane and is widely chosen as the cost of production is reduced by the use of energy-efficient and process-control techniques. This article presents a review of literature survey of identification of parameters, dynamic modelling, and control of desalination system in the past twenty years by collecting more than 65 literatures.  相似文献   

19.
The objective of this study is to investigate the effect of solution chemistry of branched polyethyleneimine (PEI) draw solute and to evaluate the PEI draw solute in a combined forward osmosis (FO)/nanofiltration (NF) system. Pure water was extracted from feed solution using the FO process, and the separation of pure water was achieved by the NF process. Lower molecular weight PEI showed higher water flux than higher molecular weight PEI, due to the lower internal concentration polarization caused by a higher diffusion rate and the easy permeation of pure water by lower viscosity of the draw solution (DS). The FO water flux was determined by the osmotic pressure induced by protonation/deprotonation of PEI, and the reverse draw solute flux was determined by the combination of PEI size due to the speciation and electrostatic interaction between the membrane and PEI. This study shows that the Js/Jw value of PEI at pH 7 was smaller than those of sodium chloride and magnesium sulfate. The recovery of PEI DS using NF has a higher value (99.4%) than of sodium chloride (20.6%) and magnesium sulfate (97.0%); this means that PEI would be a promising draw solute in an FO–NF combined system for the saline water desalination. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42198.  相似文献   

20.
Desalination of seawater by reverse osmosis requires a membrane which approaches theoretical semipermeability and is sufficiently thin to provide transport of water at practical operating pressures and recovery rates. This objective has been achieved by the development of a family of thin-film composite membranes based on nitrogen-containing polymers supported on a fabric-reinforced porous supporting membrane. The membranes, packaged in the spiral-wound configuration, exhibit high water permeability, low salt permeability, thermal stability, resistance to micro-organisms, wet-dry, and chemical stability.Membranes of this type are currently employed for the conversion of seawater to potable water in the world's first large reverse osmosis plant in Jeddah, Saudi Arabia, trailer-mounted U.S. Army military units, off-shore drilling platforms, marine applications, and hand-powered emergency units. Reverse osmosis systems, employing thin-film composite membrane elements, are also in operation for the conversion of brackish to potable water and a variety of water-reuse applications for textile finishing, boiler water for electrical utilities, soft drink manufacturing, agricultural water, and reclamation of municipal waste water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号