共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
金属材料切屑成形过程中刀具前刀面与切屑之间的摩擦特征参数和切削温度是决定刀具磨损、动态切削力特性以及加工稳定性的关键表征量。通过切削物理试验与力学解析复合方法对马氏体不锈钢在立铣加工过程中,不同切削用量下的刀-屑摩擦特征参数进行定量计算分析,又基于物理切削试验测量值迭代标定的斜角切削平均温度高精度解析计算方法对刀-屑界面切削温度进行定量计算分析。研究表明:在切削速度30~90 m/min、每齿进给量0. 1~0. 15 mm/齿范围,切削速度的增加对剪切角和切屑滑动速度影响显著,对切削温度的影响也较为显著;经过试验值迭代修正的M C Shaw剪切模型能够实现斜角切削平均温度的有效解析求解,求解精度满足工程实际需要。 相似文献
3.
本文采用新的测量技术可测定切削时金刚石涂敷刀具前倾面的精确温度分布。该技术可望在确定金刚石涂敷表面热负荷以获得最优切削参数和减少其磨损率、提高经济效益方面发挥作用。此外,它还可用于确定不同涂敷刀具对不同工件的切削加工性能。 相似文献
4.
5.
切削制备纳米材料过程的应变与温度预测 总被引:1,自引:0,他引:1
大应变切削是制备纳米材料的一种新方法.切削过程中的应变和温度是影响晶粒细化程度的两个重要参数.在DEFORM软件环境下,建立铝合金6061切削过程的有限元模型,通过切削过程的有限元仿真,研究刀具的切削角度、切削用量对大应变切削过程中的材料应变、切削温度的影响规律.研究表明:影响剪切应变的主要因素是刀具前角,前角越小,对应的剪切应变越大;大应变主要集中在剪切区域,即第一变形区;影响切削温度的主要因素是切削速度,在切削速度较低时,切削温度上升速度缓慢,将切削速度由目前20 mm/s提高到100 mm/s,仍然可以使切削温度控制在铝合金6061动态再结晶温度之下,可以大幅度提高制备纳米材料的效率. 相似文献
6.
7.
王细洋 《组合机床与自动化加工技术》2002,(12):52-54
介绍了综合测量切削平均温度和三向切削力并对其进行分析处理的虚拟仪器.利用PCI-1 200卡采集热电偶测温仪和电阻应变式测力仪传输的数据.利用LabVIEW平台开发.具有显示 力和温度波形曲线、热电偶标定和测力仪刻度标定、确定切削温度和切削力指数公式的能力 .提出了基于切削力和切削温度信息的切削状态判定方法. 相似文献
8.
本文提出了在磨料流加工(AFM)工艺中切削比能与切向切削力的计算模型.该模型由磨料流加工工艺参数构成,如磨粒大小、外压力、工件材料硬度、循环次数及有效磨粒数目.同时,本文就在磨料流加工工艺中热量流向工件与流向介质的热传导问题进行了分析,并对比了工件温度的理论计算值与实验观察值,讨论了磨料流加工工艺参数对工件温度的影响.同时,该模型还预测了流向工件与流向介质的热量百分比. 相似文献
9.
10.
通过硬质合金刀具车削氟金云母陶瓷实验,研究可加工陶瓷切削温度。以特征温度表征切削温度研究氟金云母可加工陶瓷车削加工中的切削温度。结果表明,特征温度随转速的变化幅度小;随着进给速度增大,特征温度整体上是下降的,并且进给速度在0.1~0.12 mm/r间,特征温度下降幅度较大;在特征温度随着切削深度增加而增加的过程中,存在一个下降阶段,而且下降阶段结束后,特征温度增长幅度变大。同一工艺参数下随切削次数的增加,测得的特征温度升高,其原因是:每次切削中,摩擦热主导温度变化,随切削次数的增加,刀具磨损量增大,特征温度升高。由于陶瓷低导热性和脆性,切削温度振颤不明显。 相似文献
11.
切削加工过程模拟的实质是采用有限元方法求解非线性问题的过程。建立了钛合金构件切削有限元模型,其切屑分离准则是以材料损伤理论为基础确立的;利用已有的研究成果,构建了求解切削温度场和切削力的有限元模型;利用有限元软件ABAQUS/Explicit进行模型建立、材料输入、部件装配、局部细分网格、运动仿真等;通过对钛合金切削过程的仿真计算得到切削温度、切削力等的一般规律。结果表明:模拟结果与实际生产结果相符合。 相似文献
12.
13.
14.
低熔点氧化物Li2O和ZnO使SiO2-Al2O3-MgO—K2O-B2O3-Li2O-ZnO-F系的熔化温度和析晶温度大大降低。ZnO还有扩大玻璃形成区的作用,使较高Li2O含量的玻璃可以获得透明。通过优选SiO2,Al2O3和MgO的成分,得到的玻璃陶瓷中除有足够数量的互相搭接良好的云母晶体外,还可以获得堇青石的晶体,它们分布在的云母晶体之间,使玻璃相减少。从而减小了晶体间的平均自由程,提高了可切削玻璃陶瓷的强度。 相似文献
15.
纳米切削会造成工件的内部微观缺陷,这种缺陷会引起残余应力的变化进而影响工件的表面质量,而这种缺陷结构与切削层初始温度有密切联系。为降低工件纳米切削加工制造中的缺陷,采用分子动力学的方法,构建了含有切削层的单晶铜纳米切削模型。首先,通过分析工件结构体积及微观缺陷的变化确定了切削层的适用初始温度;其次,分析了切削层初始温度对切削力的影响,并在不同初始温度和切削力作用下对单晶铜位错和晶格等微观结构的变化进行了分析;最后,通过实验对仿真结果进行了间接验证。结果表明:单晶铜切削层初始温度的可选范围为293~400 K;在此范围内,随着切削层初始温度的升高,切削力大小变化显著,但波动平稳,晶格结构的转变速度也随之增快;当切削层初始温度设为360~390 K范围内时,单晶铜工件的表层微观缺陷相对较少,由此可预测单晶铜工件在此初始温度范围内加工得到的表面质量较高。 相似文献
16.
日本关西大学工学院的北风嶋弘一教授新近开发成功了一种利用NiTi形状记忆合金材料制作的切削加工用刀夹,它是把NiTi合金包覆于碳素钢上的双重圆筒形的结构。将该刀夹冷却到-10℃之后即可将切削刀具插入其中,然后回复到常温时刀具即被牢固地固定在刀夹中。 相似文献
17.
为深入理解单晶锗纳米切削特性,提高纳米锗器件光学表面质量,首次采用三维分子动力学(MD)的方法研究了单晶锗纳米切削过程中工件原子的温度分布情况,研究了晶体的各向异性(100), (110), (111)晶面对切削温度的影响及切削温度对切削力的影响。结果表明,在切削过程中最高切削温度分布在切屑当中,达到了460K。刀具的后刀面与已加工表面之间的区域也有较高的温度,在400K以上。在三个不同的晶面中,(111)晶面的切削温度最高,其根本原因是由于不同晶面间的原子空间结构不同,(111)晶面的原子密度最大即为单晶锗的密排面,释放出的能量最多。切削温度对切削力也有影响,切削温度越高,工件中原子受到的切削力越小。 相似文献
18.
研究了碳纤维增强聚合物(CFRP)/Ti叠层构件钻孔时切削温度对钻孔质量的影响,分析了有无钛合金支撑层制孔时CFRP的切削力、切削热、孔壁表面和亚表面质量,并提出了亚表面损伤评价方法。结果表明,钻孔时钛合金支撑层对CFRP切削力及表面质量的影响较小,但对切削温度和亚表面质量影响显著。刀具同时加工钛合金和CFRP时会产生大量切削热,导致CFRP孔出口处温度大幅升高,高温导致CFRP树脂基体的刚度和粘结性能下降,使得CFRP孔出口附近纤维层上出现了严重的亚表面损伤。同时,采用提出的亚表面损伤评价方法对亚表面损伤进行评价,发现靠近出口处的纤维层亚表面损伤最为严重。在远离出口平面的方向上,亚表面损伤程度逐渐降低。因此,CFRP/Ti叠层构件钻孔过程中切削温度显著影响CFRP孔的亚表面质量,且亚表面的损伤程度是评价CFRP加工质量的重要因素。 相似文献
19.
20.
王欣亭 《组合机床与自动化加工技术》1995,(10):20-22
本文介绍了“切削温度测量”实验的正交设计法。对正交实验的方法、步骤、参数的选择,实验数据的处理和实验结果的分析进行了详细的阐述,并给出了计算机数据处理程序。 相似文献