首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
转台伺服系统滑模变结构控制器的设计与仿真研究   总被引:5,自引:1,他引:5  
摩擦阻力是转台伺服系统低速运行状态下主要的非线性干扰,该文在介绍了非线性摩擦环节的动态,静态模型及其对转台伺服系统性能的影响的基础上,设计了一个补偿摩擦的滑模变结构控制器,在转台伺服系统的输入加入一个滑模变结构控制器,来补偿非线性摩擦带来的影响,保证了系统的鲁棒性能,仿真结果表明,效果良好。  相似文献   

2.
为稳定放卷张力,提出了自适应滑模摩擦补偿控制算法,对放卷机构中的负载惯量与摩擦进行在线辨识。以放卷电机的转速和角位移误差为变量设计了线性滑模面;以惯量及摩擦估计误差变量及滑模面的偏移变量为基础设计了Lyapunov函数;以该函数的梯度下降为原则设计了在线辨识的自适应律。当系统在自适应滑模控制器的作用下稳定在滑模面上时,负载惯量及摩擦便趋近于其实际值。通过该摩擦补偿方法实现了张力控制目标。对所提方法进行单轴仿真及试验验证,表明该算法能有效提高张力的控制精度。  相似文献   

3.
针对下肢外骨骼机器人不确定模型及摩擦因素的轨迹运动控制问题,提出了一种基于模糊补偿的自适应滑模控制(FCASMC)方法。首先利用滑模控制思想设计非线性滑模面,设计滑模控制器实现系统的稳定性;接着采用模糊控制方法对其机器人中关节运动存在的未知摩擦项进行模糊补偿与逼近,减少未知摩擦项和外扰动等因素下对系统带来的稳定性影响;最后还采用了鲁棒项来消除补偿逼近误差所带来的影响,也可减少滑模方法所带来的抖振问题,从而使整个系统的稳定性进一步提高。最后,基于Lyapunov定理对所设计的控制器进行稳定性证明和仿真。仿真结果表明,设计的控制器可以很好地对不确定摩擦项进行补偿,机器人的关节运动轨迹跟踪能实现全局跟踪,提高了在今后实际工程中的应用研究价值。  相似文献   

4.
针对双起升桥式吊车双吊具同步协调运行过程中普遍存在的系统参数变化和摩擦等不确定扰动问题, 本文基于双吊具的非线性感应电机动态数学模型及其耦合动力学模型, 提出了一种时变分层增量式滑模控制和自适应补偿相结合的双吊具同步协调控制方法. 该方法首先利用时变滑模技术实现了控制器在滑模趋近阶段的鲁棒性控制, 并采用分层增量形式的滑模面设计方法简化了控制器参数选取. 然后, 采用自适应补偿技术抑制了双吊具运行中存在的不确定扰动, 同时减小了切换函数的增益值. 此外, 在切换函数设计中采用了指数趋近技术, 使滑模控制器的抖振现象明显降低. 最后, 利用Lyapunov方法证明了该方法的全局稳定性和收敛性, 并通过数值仿真和物理实验验证了该方法的有效性.  相似文献   

5.
针对高精度光电伺服稳定平台系统中摩擦和各种非线性干扰对跟踪精度的影响问题,提出了一种基于LuGre摩擦模型的积分型滑模自适应控制算法。首先建立了基于动态LuGre摩擦的伺服系统模型,根据LuGre模型,构造了一个非线性观测器来估计摩擦中的未知状态变量;然后设计积分型滑模自适应控制算法实现摩擦补偿和各种扰动的估计,通过设计最优的反馈控制律,保证了积分型滑模的收敛速度,并引入自适应思想设计滑模控制器,有效的减弱了滑模控制中的颤抖现象;最后利用Lyapunov理论证明了控制系统的稳定性。仿真结果表明:所提方法有效的抑制了摩擦等各种干扰对稳定平台系统的影响,在提高系统跟踪精度的同时增强了系统的鲁棒性能,该方法也简化了设计过程,具有一定的应用价值。  相似文献   

6.
车辆线控转向(steer-by-wire,SbW)系统存在摩擦力矩及回正力矩等不确定动态特性,难以实现精确建模与有效控制.为此,提出一种基于自适应模糊逻辑系统的自适应高阶滑模(adaptive higher-order sliding mode, AHOSM)方法,实现SbW系统的有效控制.首先,通过自适应模糊逻辑系统逼近SbW系统的未知动态,使控制器的设计不再需要摩擦力矩及回正力矩的动力学模型;其次,采用高阶滑模和自适应增益技术削弱传统滑模控制器存在的抖振现象;再次,通过构造Lyapunov函数设计增益自适应律补偿逼近误差和系统不确定项对控制精度的影响,该方案不需要系统不确定项的界已知,且能够避免增益过估计现象;最后,通过稳定性分析证明该控制器可以在有限时间内建立实际滑动模态,数字仿真和硬件在环实验进一步验证了该控制方法的有效性和优越性.  相似文献   

7.
针对异型曲面打磨机器人中摩擦导致的加工精度降低的问题,提出了一种改进的非线性干扰观测器对其进行观测和补偿。建立了高精度工业机械臂的动力学模型,基于该模型设计非线性干扰观测器并应用李雅普诺夫函数稳定性理论给出了系统的稳定性分析。引入典型摩擦模型,利用观测器估计不可测的内部摩擦状态,并将估计值用于PD控制器中摩擦补偿部分。经过仿真以及实验验证,对比实验结果表明该观测器可以使系统的控制精度大幅提高,降低了仿真实验的跟踪误差,实验平台的控制精度提高了30%以上,能很好地补偿双关节机械手的摩擦力,更好地跟踪关节位置。  相似文献   

8.
基于滑模变结构控制的RBF神经元网络   总被引:2,自引:0,他引:2  
针对高精度飞行仿真转台,设计一种基于滑模变结构控制的RBF神经元网络控制器。该控制器根据滑模变结构控制器的特点,将控制律分为等效控制律和到达控制律。等效控制律使系统运动于滑模面附近,由RBFN拟合而成,权值用自适应算法在线修正,确保了实时控制的可能性;到达控制律可使处于状态空间内任意初始位置的系统趋近于滑模面,由滑模控制器的可达性条件推出,其中用到了系统的不确定性参数的上下界。计算机仿真结果表明了该方法的鲁棒性和实际应用的可能性。  相似文献   

9.
在伺服系统优化控制设计问题的研究中,对于伺服转台控制系统,当系统进行低速跟踪时,由于摩擦力矩的存在,会使系统出现低速爬行现象.针对伺服电机运行时产生的摩擦扰动,进行理论分析与研究,提出一种补偿摩擦力矩的控制器,使系统满足高精度要求.在MATLAB仿真平台上,建立滑模自适应控制器的控制系统仿真模型,仿真结果表明滑模自适应控制器不仅对模型参数的随机性具有自适应的能力,而且对摩擦扰动和其他扰动信号具有鲁棒稳定性.采用滑模自适应控制器的伺服系统可以获得较高的跟踪精度的同时具有一定的鲁棒稳定性,且系统抖振较小.  相似文献   

10.
基于分解控制的转台非线性摩擦补偿控制   总被引:2,自引:0,他引:2  
为解决三轴飞行仿真转台的非线性摩擦问题,该文首先分析了转台中的非线性参数摩擦模型的特性,并将其线性化,得到线性化动态状态变化摩擦模型。其次,采用分解控制算法对不同类型的摩擦分别设计摩擦补偿器,然后综合出整体的控制率。其中常规控制器用来补偿名义模型;自适应补偿器用来补偿可参数化摩擦模型;鲁棒补偿器用来补偿非参数化摩擦模型。最后,分析和仿真研究表明:该摩擦补偿方法有效可靠。  相似文献   

11.
This paper presents a simple and effective nonlinear friction compensation method which is derived from an adaptive control strategy and its practical application to a linear actuator. The proposed adaptive friction compensation method is shown to be equivalent to the reversed integral controller that is easily applied to the conventional PID controller. The reversed integral controller reverses the sign of the integrator output as the sign of the velocity changes. It analyzes how the reversed control action can compensate for friction. The effectiveness of this approach is demonstrated by experiments on a 3-PRPS (Prismatic-Revolute-Prismatic-Spherical joints) in-parallel 6-DOF manipulator.  相似文献   

12.
本文针对全方位移动机器人轨迹追踪中的摩擦补偿问题,提出了一种改进的非线性自抗扰控制器.首先建立了含有经典静态摩擦模型的全方位移动机器人动力学模型.其次,基于该模型设计非线性控制器和线性扩张状态观测器并给出了系统的稳定性分析.通过将模型已知项加入线性扩张状态观测器中得到摩擦力的估计值,并将估计值用于非线性控制器中摩擦补偿部分.为减小摩擦力对机器人低速运动轨迹追踪控制的影响,非线性控制器采用变增益控制器进行轨迹追踪控制.最后通过仿真结果验证本文提出控制器的有效性.  相似文献   

13.
本文分析了变论域模糊控制的位置环控制算法,研究摩擦力对系统低速性能的影响,得出基于stribeck摩擦模型的摩擦力矩补偿方法,最终可消除摩擦对系统低速性能的影响,提高系统精度.  相似文献   

14.
高精度鲁棒运动控制器设计及实验研究   总被引:1,自引:0,他引:1  
针对影响运动控制性能的因素,设计了一种新型的高精度鲁棒运动控制器.该控制器建立在一种新型摩擦模型基础上,对摩擦状态进行估计和补偿.提出了时间延迟控制估计扰动的补偿方案,并对此方案进行了分析和实验研究.实验结果表明,所提出的控制方案鲁棒性强,具有很大的工业应用价值.  相似文献   

15.
本文针对系统中存在的关节摩擦、动力学参数不确定性和外部负载干扰等因素引起的柔性机械臂系统控制性能下降的问题,提出了一种基于扰动和摩擦补偿的非奇异快速终端滑模控制方法(NFTSMC-DE-FC).首先,设计扰动估计器(DE)对系统未知动态参数和负载干扰进行估计.然后,针对扰动估计器不能精确估计的关节摩擦力矩进行辨识.最后,利用滑模控制技术设计非奇异快速终端滑模控制器,并将扰动估计值和摩擦力辨识值以前馈的方式进行补偿,实现对柔性机械臂系统给定参考轨迹跟踪的准确性以及对外界扰动的鲁棒性.值得注意的是,与传统只使用扰动估计器的方法相比,本文考虑到了摩擦力等非线性因素的影响,并利用辨识技术对摩擦力进行辨识,提高了控制精度.利用Lyapunov稳定性定理从理论上证明了所设计的控制器可以保证闭环系统的稳定性.实验结果表明,相较于非奇异快速终端滑模控制方法(NFTSMC)和基于扰动估计器的非奇异快速终端滑模控制方法(NFTSMC-DE),所提方法提高了柔性机械臂系统的轨迹跟踪性能.  相似文献   

16.
In this paper, an adaptive controller with structurally dynamic wavelet network is developed for a harmonic drive subject to parameter varying friction. The control architecture integrates a proportional controller, a feedback adaptive component and sliding component to adaptively compensate for the friction to achieve accurate position tracking. Global asymptotic stability of the algorithm is proved by using Lyapunov function. In parallel to the adaptive controller, a fuzzy reconfiguration scheme is devised to change the structure of the network along with weights updating to improve the system tracking performance and robustness. Experimental tests on a harmonic drive manipulator verify the effectiveness of the proposed control method.  相似文献   

17.
针对伺服系统在低速情况下具有较强的摩擦现象,是一个强非线性系统,本文将模糊控制与PID控制手段结合起来,提出采用非对称模糊PID控制方法,将其引入伺服系统的位置环中,同时建立了基于MATLAB/SIMULINK的系统仿真图。通过仿真试验,验证了非对称模糊PID控制方法具有较好的控制精度和稳定性,该控制方法可使系统的性能有所提高。  相似文献   

18.
In this paper, a robust adaptive tracking control scheme is developed for servo mechanisms with nonlinear friction dynamics. A continuously differentiable friction model is used to capture the friction behaviors (e.g. Stribeck effect, Coulombic friction and Viscous friction). The robust integral of the sign of the error (RISE) feedback term is employed to design an innovative adaptive controller to compensate nonlinear friction and bounded disturbances. To reduce the effect of noise pollution, the desired trajectory is employed to replace the output signal in controller design. The developed adaptive controller can guarantee the asymptotic tracking performance for nonlinear servo mechanisms in the presence of nonlinear friction and bounded disturbances. Comparative experimental results are used to validate the effectiveness of the developed control algorithm.  相似文献   

19.
This paper presents a new method of actively controlling the vibration of a flexible beam by using a rigid body motion actuator based on flow source control. The proposed flow source controller generates a control input of a rotating angle instead of a torque that acts as an effort source control input. It is shown that the proposed flow source control improves the vibration suppression performance when disturbance forces such as friction forces are involved in the rigid body motion dynamics. The stability and the robustness to disturbance of the flow source controller are compared with an effort source controller. An optimal control theory is used to design the flow source vibration controller and a conventional PD controller is used for the motor position controller. Computer simulations and experimental results on a rotating beam system show that the vibration control performance achieved by the proposed flow source control method is superior to that of an effort source control method.  相似文献   

20.
A switched adaptive controller is designed for robot manipulators with friction and changing loads. The nonlinear friction is depicted by a nonlinear friction model, and a switched nonlinear system is used to model the parameter jump caused by load change. Hyperstability theory is used in the designing procedure, which provides more options for adaptive laws than Lyapunov theory. In the presence of friction and changing loads, asymptotic tracking is achieved under arbitrary switching, which is not able to accomplish by a non-switched adaptive controller. The proposed method is validated by a simulation of a 2 degree of freedom manipulator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号