共查询到20条相似文献,搜索用时 0 毫秒
1.
混沌量子粒子群优化算法 总被引:1,自引:0,他引:1
针对量子粒子群优化算法在处理高维复杂函数时存在的收敛速度慢、易陷入局部极小等问题,提出了混沌量子粒子群优化算法.采用了基于群体适应值方差的早熟判断机制,同时提出了一种基于混沌搜索的新方法,提高了搜索效率.数值实验结果表明,混沌量子粒子群算法效率高、优化性能好,且具有很强的避免陷入局部最优的能力,其性能远远优于一般的粒子群算法和量子粒子群算法. 相似文献
2.
针对粒子群算法早熟收敛和搜索精度低的问题,提出了基于混沌变异的小生境量子粒子群算法(NCQPSO).该算法结合小生境技术并加入了淘汰机制.使算法具有良好的全局寻优能力.变尺度混沌变异具有精细的局部遍历搜索性能.使算法具有较高的搜索精度,实验结果表明,NCQPSO算法可有效避免标准PSO(Particle Swarm Optimization)算法的早熟收敛,具有寻优能力强、搜索精度高、稳定性好等优点.也优于原始的量子粒子群算法QPSO(Quantum-behaved Particle Swarm Optimization). 相似文献
3.
4.
5.
6.
7.
8.
针对量子粒子群优化算法在处理高维复杂函数收敛速度慢、易陷入局优的问题,利用混沌算子的遍历性提出了基于惯性权重自适应调整的混沌量子粒子群优化算法。新算法首先引入聚焦距离变化率的概念,将惯性因子表示为关于聚焦距离变化率的函数,从而使算法具有动态自适应性;其次,在算法中嵌入有效判断早熟停滞的方法,一旦检索到早熟迹象,根据构造的变异概率对粒子进行变异使粒子跳出局部最优,从而减少无效迭代。对高维测试函数的实验表明:改进算法的性能优于经典的PSO算法,基于量子行为的PSO算法。 相似文献
9.
一种改进的混沌量子粒子群优化算法 总被引:1,自引:0,他引:1
通过将量子粒子群优化算法和佳点集法相结合,提出一种改进的混沌量子粒子群优化算法,用于解决复杂函数问题。将佳点集融合到量子粒子群算法中,以提高解空间的遍历性,对函数实现全局寻优。用混沌序列改变惯性权重 w,调节粒子群优化算法的全局和局部寻优能力。采用线性递减速度比例收缩因子η提高搜索速度,避免早熟收敛。用量子Hadamard门对量子编码进行变异,增强种群的多样性,促使粒子跳出局部极值点。对典型复杂函数的仿真结果表明,该混合算法寻优效率高、收敛速度快,能有效避免早熟收敛。 相似文献
10.
基于改进粒子群算法的BP算法的研究 总被引:4,自引:0,他引:4
针对BP算法的缺陷以及标准粒子群算法优化BP网络权值的不足,为了提高算法的全局搜索能力,提出了基于自适应动态调整惯性权重的粒子群算法的BP网络算法.算法根据适应度值的改变情况来调整惯性权重,使惯性权重的改变不依赖于最大迭代次数和当代迭代次数,从而使整个网络具有较快的收敛速度和较小的误差.将算法应用于海参疾病的诊断中.实验发现,基于自适应动态调整惯性权重的粒子群算法的BP算法比基本粒子群算法的BP算法收敛速度快,算法的准确率也比较高,同时改进算法训练的BP网络也比基本粒子群算法训练的BP网络稳定.仿真证明,自适应动态调整惯性权重的粒子群算法对BP算法的优化优于基本粒子群算法. 相似文献
11.
混沌映射的多种群量子粒子群优化算法 总被引:1,自引:0,他引:1
针对量子粒子群优化算法存在早熟收敛的问题,提出一种基于Logistics混沌映射变异的多种群量子粒子群优化算法(CMQPSO),采用分段Logistics混沌映射生成初始粒子群,根据适应度值将群体分为顶层和底层种群。顶层出现聚集时才进行高斯扰动,底层种群则按概率通过Logistics混沌变异生成分布更为均匀的粒子,提高种群的多样性,从而较好地平衡了算法的局部和全局搜索能力。对测试函数的计算表明算法较QPSO等其他算法在搜索能力和收敛速度方面有明显改进。分析了算法重要参数停滞阈值[Cσ]和比例系数[S]对搜索性能的影响,给出合理的取值范围。 相似文献
12.
田东平 《计算机工程与应用》2013,49(17):43-46
针对粒子群优化算法稳定性较差和易陷入局部极值的缺点,提出了一种新颖的混沌粒子群优化算法。一方面,在可行域中应用逻辑自映射函数初始化生成均匀分布的粒群,提高了初始解的质量和增加了算法的稳定性;另一方面,采用两组速度-位移更新策略,即对全局最优粒子单独使用特定的速度-位移策略更新,而对其余粒子则使用常规的速度-位移进行更新,从而有效避免了算法陷入局部收敛的缺点。将该算法应用在4个基准测试函数优化中,仿真结果表明其能有效提高全局寻优的性能,且稳定性好。 相似文献
13.
混沌粒子群优化算法研究 总被引:8,自引:0,他引:8
利用混沌运动的遍历性、随机性和规律性等特点,提出一种求解优化问题的混沌粒子群优化(CPSO)算法.该算法的基本思想是采用混沌初始化进行改善个体质量和利用混沌扰动避免搜索过程陷入局部极值.典型复杂函数优化仿真结果表明该方法是一种较简单有效的算法. 相似文献
14.
基于粒子群BP神经网络人脸识别算法 总被引:8,自引:6,他引:8
人脸识别技术就是利用计算机技术对人脸图像进行分析,从中提取有效的特征来识别出人的身份,其关键技术在于人脸特征的描述和模式识别.为此,基于粒子群BP神经网络提出了人脸识别算法.该算法首先用小波变换对人脸图像进行小波分解,形成低频小波子图,然后用离散余弦变换将人脸图像在特征空间中提取,并作为粒子群BP神经网络的输入,由粒子群BP神经网络和后验概率转换器构成人脸识别器.针对ORL人脸库的实验结果表明该方法具有较高的识别率. 相似文献
15.
混沌粒子群算法和量子粒子群算法在一定程度上改进了标准粒子群算法的搜索质量,但两者仍存在收敛速度慢、易陷入局部极小等问题。混沌量子粒子群算法将混沌搜索机制引入量子粒子群算法,提高了搜索效率和计算质量。用粒子群算法、混沌粒子群算法、量子粒子群算法和混沌量子粒子群算法对一平板结构进行模型修正,结果表明,混沌量子粒子群算法具有较高的搜索效率和避免陷入局部最优的能力,修正后的模型比单独采用混沌或者量子粒子群算法具有更高的修正精度。 相似文献
16.
17.
18.
19.