首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
采用一种高效、绿色的物理方法对NdFeB废旧磁体表面进行清理并回收利用。通过晶界添加低熔点Ho63.3Fe36.7合金制备NdFeB再生磁体。在未添加Ho63.3Fe36.7的磁体中,没有足够的富Nd相隔离Nd2Fe14B相,从而导致磁体性能较差;随着Ho63.3Fe36.7合金的加入,晶界相变得清晰且连续。在质量分数2%Ho63.3Fe36.7添加量下,钕铁硼再生磁体获得最佳磁性能[(BH)max+Hcj=1756.07]。此时矫顽力增加123 kA/m(约提高9.1%),磁体的最大能积由290.94 kJ/m3下降到281.07 kJ/m3,而剩磁少量下降。通过对再生磁体显微组织和成分的分析可知,磁体晶界处形成了(Nd, Pr, Ho)2Fe14B壳层,这能够提高磁体的矫顽力。而X射线衍射分析表明,磁体I(006)/I(105)的衍射峰强度比从0.92提高到1.32。这说明磁体取向度提高,可以减弱对剩磁的影响,从而使得再生磁体在保持剩磁的同时提高磁体的矫顽力。  相似文献   

2.
刘路军  刘政  刘仁辉  刘永 《金属学报》2023,(11):1457-1465
采用添加Nd_(90)Al_(10)低熔点合金调控制备了扩散用烧结Nd_2Fe_(14)B磁体,并采用Tb晶界扩散制备了相应的扩散磁体,分析了扩散磁体的晶界结构和成分对磁体矫顽力的影响。结果表明,添加质量分数为0.5%的Nd_(90)Al_(10)合金调控后,晶界扩散(GBD)后磁体的矫顽力提高到1439 kA/m,相对于未晶界调控的扩散磁体增加了530 kA/m。添加Nd_(90)Al_(10)低熔点合金不会影响GBD前磁体的Curie温度,但降低了磁体的低温相变温度。GBD后磁体Tb取代晶格中的Nd引起Nd_2Fe_(14)B相的晶格常数减小,从而使XRD谱中衍射峰位右移。经Nd_(90)Al_(10)调控后的扩散磁体表面处的主相晶粒的富Tb壳清晰可见。从距离磁体表面20μm增加到100μm时,富Tb壳层仍清晰可见。当深度继续增加到500μm时,经Nd_(90)Al_(10)调控后的扩散磁体晶粒周围都有连续晶界相。经晶界调控的扩散磁体可见衬度明显的富Tb壳层,形成了非晶的富Nd相,增强了两两主相晶粒间的去磁耦合能力。Nd在富Nd相中心区域出现峰值,更多的富Nd相在晶界扩散过程中作为Tb向磁体内扩散的通道,Tb原子在富Nd相的浓度高达约35%,其扩散深度和使用效率明显提升。  相似文献   

3.
采用磁控溅射方法在烧结钕铁硼磁体表面沉积一层Tb镀层,然后进行晶界扩散热处理,制备出晶界扩散型(Tb,Nd) FeB磁体.通过扫描电子显微镜、电子探针分析仪和磁滞回线测量仪分析了晶界扩散前后磁体的微观结构与磁性能.结果 表明:与NdFe磁体相比,采用晶界扩散方法制备的(Tb,Nd) Fe磁体具有更宽的晶界相,且晶界相在主相晶粒周围连续分布,起到了去磁耦合作用.并且分布在主相晶粒表层的重稀土元素Tb形成了磁晶各向异性场更高的(Nd,Tb)2 Fe14B相.(Tb,Nd) FeB磁体的内禀矫顽力Hcj得到显著提升,其Hcj由NdFe磁体的15.98 kOe提高到23.78 kOe.  相似文献   

4.
采用双合金法,即将2种粉末混合压制成型制备烧结永磁体可提高磁体磁性能。本实验将Nd_(13)Fe_(81)B_6和TbHx粉末混合制成烧结磁体,研究Tb元素扩散分布以及其对磁性能的影响。Nd_(13)Fe_(81)B_6磁体矫顽力为358.2 kA/m,当TbHx混合量为3%(质量分数,下同)时,烧结磁体的矫顽力增加至1592 kA/m。扫描电镜和元素面分布谱表明,Tb元素更容易扩散进入Nd_2Fe_(14)B主相而不是富集在晶间富稀土相。Tb元素进入主相会替代Nd形成具有更高各向异性场的(Nd, Tb)-Fe-B表层,这样在反磁化过程中晶粒表层磁畴壁的形核场会增加,因此矫顽力增加程度显著。但是,TbHx混合量超过5%时,磁体中更多Tb原子从晶粒表层扩散入Nd2Fe14B相晶粒内部,这样晶粒表层反磁化形核场的提高程度会减弱,因而磁体矫顽力增加幅度降低。本研究说明要进一步提高双合金Nd-Fe-B磁体磁性能需控制元素扩散并优化磁体的元素分布。  相似文献   

5.
为了实现稀土资源的平衡应用且降低RE-Fe-B稀土永磁材料的价格,针对混合稀土基永磁材料进行研究,分别采用单、双主相工艺制备了名义成分[(Pr,Nd)1-xMMx]30.3(Fe,Co)balM0.73B0.98 x=0.3,0.5和0.7,质量分数)的磁体,对比研究其磁性能和抗腐蚀性。研究发现:双主相工艺制备的磁体相比单主相工艺制备的同成分磁体展现了优越的磁性能和抗腐蚀性。当x=0.5,双主相磁体的磁性能为Br=1.308 T,Hcj=799.98 kA/m和(BH)max=325.6436 kJ/m3,远高于同成分的单主相磁体的性能(Br=1.297 T,Hcj=746.8868 kA/m 和(BH)max=317.8428 kJ/m3)。这种改进源于富稀土相分布的改进以及主相晶粒间和晶粒内部耦合作用的增强。当双主相磁体暴露在湿热环境下时,磁体中不仅存在富稀土相腐蚀,也存在主相晶粒的腐蚀成粉现象,这主要是由于富稀土相与水蒸气和氧气反应时产生氢气,导致主相晶粒被氢化,由于主相晶粒间和晶粒内部的镧铈分布差异,产生大的应力,导致其表现出区别于单主相磁体的腐蚀行为。  相似文献   

6.
采用双合金法将两种粉末混合制备烧结永磁体可提高磁体磁性能;但在烧结过程中两种粉末之间存在元素扩散,元素扩散对磁性能的影响程度需要进一步研究。本文将Nd13Fe81B6和TbHx粉末混合制备烧结磁体,Nd13Fe81B6磁体矫顽力为4.5 kOe。当TbHx混合量为3 wt.%,烧结磁体的矫顽力增加至20.0 kOe。通过热激活研究认为,磁畴壁的形核是反磁化需要经过的过程。由于热力学的原因Tb元素更容易扩散进入Nd2Fe14B主相而不是富集在晶间富稀土相。Tb元素进入主相替代Nd可形成具有更高各向异性场的(Nd,Tb)-Fe-B表层,在反磁化过程中晶粒表层磁畴壁的形核场会增加,因此矫顽力增加程度显著。但是,TbHx混合量超过5 wt.%,矫顽力增加幅度降低。对于TbHx混合量7 wt.%的磁体,元素分布显示在主相晶粒内部贫Tb区域明显增少,证实在烧结过程中更多Tb原子从晶粒表层扩散入晶粒内部,这样晶粒表层反磁化形核场的提高程度会减弱,因而磁体矫顽力增加幅度降低。本研究说明要提高双合金Nd-Fe-B磁体磁性能需进一步控制元素扩散并优化磁体的元素分布。  相似文献   

7.
采用感应熔炼制备名义成分为(Nd1-xCex)2.4Fe14B (x=0, 0.2, 0.4, 0.6, 0.8, 0.8, 1.0)的快淬带,研究了Ce取代量对快淬带的相组成、磁性能和微观结构的影响。XRD结果表明,所有快淬带均呈现四方结构(Nd, Ce)2Fe14B相,当Ce取代量超过x=0.6时,快淬带中出现CeFe2相并且CeFe2含量随着Ce取代量的增加而增加。快淬带的剩磁、剩磁比(Mr/Ms)和晶格常数随着Ce含量的增加而减小,当Ce取代量为x=0.2时,快淬带的磁性能为矫顽力1.31×106 A/m,最大磁能积103 kJ/m3。通过小回线和δM曲线研究了快淬带的矫顽力机理和晶粒间交换耦合,在每个样品中都观察到正的δM值,证实了交换耦合相互作用的存在。Ce含量为x=0.2时δM最大值达到0.76,说明快淬带晶粒间交换耦合效应最强,这一结果与剩磁比的变化一致。SEM观察发现,Ce取代量的增加恶化快淬带的柱状晶结构。  相似文献   

8.
利用TEM和EDX技术, 研究了2.25Cr-1Mo-0.25V钢焊缝中第二相在700 ℃下保温一系列时间段的转变. 结果表明, 焊后空冷焊缝中的第二相为M3C, 回火过程中第二相主要组成为M3C+M7C3+M23C6. 长时间回火后M3C发生球化并消失, 初期析出的低wCr/wFe(Cr与Fe的质量比)的M7C3是亚稳相, M23C6只能在较低的回火参数范围内存在, 后期形成了wCrwFe更高的M7C3稳定的第二相. M3C多呈球状,M7C3和M23C6多为长条状和块状.  相似文献   

9.
采用磁控溅射技术,在N35烧结态磁体表面沉积一层低熔点PrZn合金,经750℃热扩渗3 h,再在0~500℃进行回火处理。研究了回火工艺对沉积薄膜磁体磁性能及微观组织结构的影响,并对最佳回火工艺处理后烧结磁体热稳定性进行了研究。结果表明,最佳回火温度为500℃,该工艺下,磁体矫顽力由963.96 kA/m提高到1317.14 kA/m,即在原来的基础上增加了36.64%,富Nd晶界相变得连续和光滑,降低了硬磁相之间的磁耦合,改善了晶界相及其附近在反磁化过程中反磁化畴核的形成能力,是矫顽力大幅度提高的主要原因。另外,相对未进行晶界扩散处理的磁体而言,经最佳回火工艺晶界扩散处理后的磁体,在不同温度保温后磁通不可逆损失明显降低,具有更佳的热稳定性。  相似文献   

10.
通过调整粉末粒度控制烧结钕铁硼磁体的晶粒尺寸,研究烧结温度对磁性能的影响.在磁体表面涂覆TbHx然后进行晶界扩散,研究晶粒细化对TbHx晶界扩散磁体性能的影响.结果 表明:Tb原子扩散进入主相晶粒边缘区域,使主相晶粒外延层产生磁硬化;晶粒细小磁体中的Tb元素均匀分布于晶界,形成连续的重稀土薄层,起到良好的去磁耦合作用,从而提高磁体内禀矫顽力.因此,细晶粒磁体晶界扩散后矫顽力提升幅度大,且剩磁下降较小,具有好的综合磁性能.  相似文献   

11.
The coercivity,microstructure,and magnetic domain structure of Nd-Fe-B sintered magnets by grain boundary diffusion process(GBDP) with TbH_3 nanoparticles were systematically investigated.Compared to the original magnet,the coercivity(H_(ci)) of the GBDP magnets improved from 1702 to 2374 kA·m~(-1) with few remanence reduced from 1.338 to 1.281 T.Electron probe microanalysis(EPMA) analysis showed that Tb diffused along grain boundary,mainly concentrated in the boundary layer of the main phase,and formed a core-shell structure.Magneto-optical Kerr optical microscope(MOKE) analysis showed that there were two types of magnetic domain reversal in one grain:gradual reversal(GR) and abrupt reversal(AR).When the applied field decreased from saturated magnetic field,the reversal magnetic domain nucleated and then spread over the whole grain gradually,which was called GR.However,some grains kept the single domain state until Hh which was a value of reverse direction applied field in second quadrant in hysteresis loops.When the applied field increased above H_h,reversed magnetic domain would suddenly appear and occupy most of the area of the grain,which was called AR.That is because AR grains have higher reversed magnetic domain nucleation field(H_(RN2)) than GR grains(H_(RN1)).After GBDP,the area of AR region increased obviously and GR region decreased accordingly,indicating that the core-shell structure could change GR grain into AR grain.The coreshell structure could suppress flipping of the magnetization of the grains due to the large magnetic anisotropy of Tbrich shell.Therefore,large AR area led to high coercivity.  相似文献   

12.
In this paper, the grain boundary diffusion process(GBDP) using a Dy_(70)Cu_(30)(at.%) alloy as the diffusion source was performed in a commercial sintered Nd–Fe–B magnet, and the effect of heat treatment time on the microstructure and magnetic properties of the magnet was investigated in detail. For the processed magnets heat-treated at 860℃, as heat treatment time increased, the coercivity and the depth of(Nd,Dy)_2Fe_(14)B core–shell structure increased first and then decreased. However, when the heat treatment time was more than 2 h, the diffusion path of Dy from the Dy-rich shell phase into the Nd_2Fe_(14)B grains was revealed, and a nearly homogeneous(Nd,Dy)_2Fe_(14)B phase was formed, which brought on the decrease in both the depth of visible core–shell structure and the coercivity of Nd–Fe–B magnet.  相似文献   

13.
本文主要研究了烧结钕铁硼磁体中氧含量变化对Dy晶界扩散后的Dy含量及矫顽力增加量的影响。选取多种高、低氧磁体进行Dy扩散处理后比较发现,低氧磁体的Dy扩散量和矫顽力提高量均明显高于高氧磁体。对9个0wt.%Dy的不同氧含量样品进行扩散再次确认,氧含量减少有利于Dy扩散量、矫顽力的提高。各样品成分梯度结果显示,低氧磁体的Dy扩散量由表及里全面高于高氧磁体,内外浓度梯度也小于后者。电子探针表征结果表明,低氧磁体Dy扩散后晶界处Dy富集条纹更明显、连续,完整包裹各个主相晶粒。这种结构优化也使低氧磁体各向异性场提高幅度大于高氧磁体。磁体中氧含量降低使富钕相在主相周边均匀连续分布,为后续进入磁体内部的Dy元素提供连续的扩散通道,从而使磁体的Dy扩散量和矫顽力提高量进一步提高。  相似文献   

14.
The effect of post-sinter tempering on the DyF3-diffusion processed Nd-Fe-B was investigated using two kinds of starting magnets. The increase of coercivity after diffusion process using as-sintered magnet was higher than that using two-stage tempered magnet. The grain boundary phase of the tempered magnet became discontinuous upon further annealing at the temperature of diffusion process. This clearly indicates that a continuous grain boundary phase is helpful to the DyF3-diffusion process. When sufficiently diffused, there is no enrichment of Dy in the grain boundary phase. The excess Nd as a result of Dy substitution in the Nd2Fe14B matrix phase forms Nd-O phase at grain boundary and on the surface of the magnet. The increase of coercivity can be related to the (Nd,Dy)2Fe14B grains as well as to the improved decoupling by the grain boundary phase.  相似文献   

15.
晶界扩散作为一种能明显提升烧结钕铁硼磁体矫顽力同时实现对重稀土高质化利用的方法,日益成为目前稀土永磁学界和产业界的研究热点。本文利用自动化喷涂设备系统研究了晶界扩散烧结磁体批量制备过程中基底成分差异晶界扩散后磁体磁性能的影响,微观结构和EDS元素分析结果表明:晶界扩散后磁体矫顽力增长幅度的差异,同扩散后磁体内晶粒核壳结构形成充分与否、晶界相均匀分布与否和晶界相铁磁性元素含量高低有密切关联,同时利用晶界扩散工艺制备得到的磁体温度系数要优于传统工艺制备得到的相近似牌号的磁体。  相似文献   

16.
We discuss the mechanism of the coercivity enhancement by the grain boundary diffusion process (GBDP) using Dy vapor based on detailed microstructural characterizations. Scanning electron microscopy and electron probe microanalysis showed that a (Nd,Dy)2Fe14B shell formed in the outer region of Nd2Fe14B grains while its thickness decreased from the surface to the center of a cube-shaped sample. Atom probe tomography showed that the Dy content at grain boundaries (GBs) was close to that in the (Nd,Dy)2Fe14B shell. High-temperature annealing (at 900 °C) of a GB diffusion processed magnet led to the disappearance of the GB layers, which resulted in a substantial reduction in coercivity. This suggests that both the (Nd,Dy)2Fe14B shell and the Nd-rich GB phase layer are required microstructural features for the coercivity enhancement by the GBDP.  相似文献   

17.
The development of advanced Nd-Fe-B permanent magnet materials with high coercivity draws much attention to the relation between coercivity and microstructure at the grain boundaries of the magnets. A disordered face-centered cubic (fcc)-NdO x phase formed at the interface of Nd/Nd-Fe-B is observed, and it is believed to take an important role in coercivity generation. To have a thorough understanding of the formation mechanism of this particular oxide and its relation to the surface coercivity, a ground state analysis for whole oxygen concentration in Nd-O has been performed by combining the LSDA + U and the cluster expansion method. Systematic calculations revealed that a sequent fcc-based structure formed by introducing oxygen vacancies into NdO is stable in almost all the 0–50% oxygen concentration range, whereas in a series of hexagonal close-packed (hcp)-based structures developed from hP5-Nd2O3 no stable structure is observed, which coincides with the experimental measurement very well. A further analysis of formation energies and relevant changes in electronic structures of single oxygen vacancy in various structures revealed the insight of such fcc-based phase formation and further explained the relation between the phase stability and coercivity.  相似文献   

18.
Nd-Fe-B基纳米复合永磁材料矫顽力及其机制的研究进展   总被引:1,自引:0,他引:1  
重点探讨Nd-Fe-B基纳米复合永磁材料晶间交换耦合作用对有效各向异性和矫顽力的影响,对Nd-Fe-B基纳米复合永磁材料矫顽力机制进行讨论分析。硬磁相之间的耦合在反磁化场作用下将促进畴壁位移和磁距反转,不利于提高纳米复合永磁材料的矫顽力,在晶间形成适当的非磁性相减弱硬磁相之间的耦合作用可一定程度地提高纳米复合永磁材料矫顽力。除形核场、自钉扎作用外,晶粒内部缺陷的钉扎效应能阻止反磁化畴壁的位移,可进一步提高纳米复合永磁材料矫顽力  相似文献   

19.
本研究对(Al+Cu)含量分别为0.25%的钕铁硼基体和0.5%基体进行Dy晶界扩散,并分析了矫顽力、Dy含量分布和微观结构。通过比较两种磁体的成分、性能发现,在Dy增加量基本相同的情况下,高(Al+Cu)磁体扩散后的矫顽力提高量相较于低(Al+Cu)磁体高37kA/m~43kA/m。进一步进行成分、矫顽力的梯度分析发现,基体的(Al+Cu)含量变化并没有改变扩散后磁体内部Dy元素随扩散深度的浓度分布,但是矫顽力梯度分析结果显示高(Al+Cu)的各片层矫顽力提升量均比低(Al+Cu)片层高40 kA/m~80 kA/m。后续的EPMA的Dy面分布图显示,高(Al+Cu)基体扩散后Dy在晶界处富集条纹更清晰、连续,而TEM的EDX分析结果也显示高(Al+Cu)样品中晶界附近Dy含量更高。(Al+Cu)含量的提高,使得晶界相的流动性增强,Dy更加连续包裹主相晶粒,使得Dy增加量相同的情况下进一步提升矫顽力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号