首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
以16MnR钢缺口棒状试样为研究对象,基于有限元分析方法,提出了一个缺口构件疲劳寿命预测方法。以一种能描述材料非Masing特性的A-F类循环塑性理论为基础,用有限元方法分析了缺口棒状试样在比例与非比例加载下的多轴应力-应变状态。比例与非比例加载工况通过理想的试验控制路径和半寿命时的试验实际路径来实现加载。基于有限元应力-应变结果,运用一个基于临界面概念的多轴疲劳损伤准则预测了缺口构件的疲劳启裂位置和寿命。分析结果表明:提出的疲劳寿命预测方法能很好地预测缺口构件在比例与非比例加载下的疲劳寿命。  相似文献   

2.
考虑应变路径的多轴低周疲劳寿命预测模型   总被引:1,自引:0,他引:1  
通过分析材料在多轴非比例加载下产生附加强化的机理,该文以拉扭薄壁管试件为研究对象,分析了临界平面上的应变状态,并在此基础上以塑性应变能为控制参数定义表征多轴低周疲劳寿命对应变路径依赖性的非比例度。基于多轴疲劳临界损伤面原理,应用von-Mises 准则和本文定义的应变路径非比例度参数建立起能反映应变路径对非比例附加强化影响的多轴低周疲劳寿命预测模型。利用该模型预测08X18H10T 不锈钢、Ti-6Al-4V合金、S460N 钢和2.25Cr-1Mo 钢这4 种材料的多轴疲劳寿命,并与试验值进行比较。结果表明:该模型的预测结果与试验结果吻合良好,能同时适用于比例与非比例加载,预测精度较高,便于工程应用。  相似文献   

3.
本文通过分析疲劳破坏的本质,并借鉴目前应变能理论的最新成果,提出了一种随机复杂应力场下基于塑性应变能的疲劳寿命分析模型,以此来预测材料的多轴低周疲劳寿命.模型中的相关材料参数通过MATLAB拟合单轴及纯剪切疲劳试验数据得到,使用有限元软件ANSYS模拟试件的多轴加载情况,并从其后处理程序中提取模型中需要的数据.通过对光滑试件SM45C,304和缺口件GH4169,16MnR的计算验证,其结果表明该模型对多轴随机应变加载低周疲劳寿命具有很好的预测效果.  相似文献   

4.
金丹  田大将  王巍  林伟 《工程力学》2014,31(10):212
针对Mod.9Cr-1Mo铁素体钢缺口件进行了一系列非比例载荷低周疲劳试验,采用直流电位差法测量裂纹萌生寿命,比较了缺口半径和应变路径对疲劳裂纹萌生寿命的影响。结果表明,缺口件裂纹萌生寿命占总寿命的比例与材料类型、应变路径相关,更与缺口半径尺寸直接相关。同一路径下,随着缺口半径增加,裂纹萌生寿命所占比例增大。采用Neuber律进行缺口局部应力-应变损伤的计算,结合Smith-Watson-Topper (SWT)模型和Kandil-Brown-Miller (KBM)模型进行疲劳寿命预测。结果表明,除单轴路径和比例路径外,SWT模型得到的预测结果偏于不安全;KBM模型除对单轴预测偏于保守外,其他预测值较好,总体预测结果位于2倍分散带内。  相似文献   

5.
在多轴载荷下45钢的循环特性   总被引:2,自引:0,他引:2  
通过多轴疲劳试验,研究了在多轴加载条件下45钢的循环特性变化规律,分析了非比例附加强化、多轴循环软化/硬化特性及疲劳寿命对加载路径参数的依赖性,结果表明,相位角主要影响非比例附加强化程度,幅值比主要影响多轴循环软化/硬化特性,二者都影响多轴疲劳寿命。  相似文献   

6.
针对金属轴类零件在实际复杂工况下易产生应力集中而发生疲劳破坏的问题,利用双频激振系统,研究带V形缺口轴的疲劳寿命随缺口几何参数的变化规律。首先,提出了促进轴疲劳裂纹萌生的激振频率控制曲线,同时采用响应曲面法中的Box-Behnken设计法对V形缺口的夹角、圆角半径和深度进行三因素三水平的实验设计;其次,建立了疲劳寿命多元回归预测模型,并采用方差分析法对模型进行可靠性评价;最后,利用响应曲面和等高线图分析了缺口的夹角、圆角半径和深度对轴疲劳寿命的影响规律,并进行了预测模型的应用。研究结果表明:疲劳寿命预测值与实测值之间的误差在4.2%以内,预测精度较高,预测模型可靠;缺口几何参数对疲劳寿命从大到小的影响次序是缺口深度、缺口圆角半径、缺口夹角,以圆角半径和深度的交互作用对轴疲劳寿命的影响最为显著。研究结果可为金属轴类零件的抗疲劳设计提供重要参考。  相似文献   

7.
为探究缺口对材料多轴疲劳性能的影响,以航空用7075-T651铝合金薄壁缺口件为研究对象,进行等效应力幅变量的比例多轴疲劳实验,采用数字图像相关技术进行表征并分析临界平面角度.结果表明:随加载等效应力幅的增加,试样多轴疲劳寿命降低,缺口附近最大轴向、扭向和剪切工程应变增大.不同加载条件下,缺口附近应变集中现象均随着加载周次的增加而逐渐增强.缺口附近的应变变化过程可分为裂纹萌生、裂纹扩展及瞬断阶段.引入临界平面角度和其上最大正应变,提出SWT修正模型,其预测结果均位于2倍分散带内.  相似文献   

8.
多轴载荷下缺口件的疲劳寿命估算方法   总被引:4,自引:0,他引:4       下载免费PDF全文
吴志荣  胡绪腾  宋迎东 《工程力学》2014,31(10):216-221
提出了一种多轴载荷下缺口件的疲劳寿命估算方法。该方法基于临界平面理论,计算出缺口件各部位的多轴疲劳损伤参数,以损伤参数最大的部位为缺口件的多轴疲劳危险点。根据临界距离思想,提出了热点法和线法的临界距离的计算方法,采用热点法和线法考虑缺口件疲劳危险点附近损伤梯度的影响,以临界距离修正的损伤参数计算多轴载荷下缺口件的疲劳寿命。采用SAE1045钢缺口件的多轴疲劳试验对该文提出的寿命估算方法进行评估和验证,结果表明:该文所建立的寿命预测方法具有较好的预测能力,预测结果大部分分布在试验结果的3倍分散带之内。  相似文献   

9.
对于漏斗式小曲率半径的缺口圆棒与缺口薄片试样提出了一种采用轴向测量应变的低周疲劳测试方法.通过有限元分析建立小曲率半径的漏斗式缺口圆棒或薄片试样的轴向测试应变到缺口根部Tresca等效应变的应变转换模型,并由疲劳损伤等效假设建立基于缺口试样疲劳实验数据的材料低周疲劳寿命估算模型;完成了大曲率半径漏斗光滑试样和小曲率半径缺口试样的Ti-4Al-2V合金低周疲劳试验,基于缺口试样的疲劳试验所建立的材料低周疲劳寿命估算模型与基于大曲率半径漏斗试样的低周疲劳寿命估算模型有良好的符合度.新方法也方便应用于N18锫合金缺口薄片试样的材料高温单轴低周疲劳行为试验研究,可推荐于材料低周疲劳测试规范修订采用.文中获得的Ti-4Al-2V合金和N18锆合金的不同温度下单轴低周疲劳行为试验数据与寿命估算模型有宜于工程应用.  相似文献   

10.
孙常青 《材料工程》1994,(2):33-33,32
本文研究了45钢不同缺口半径及经预压,喷丸处理后对试样弯曲疲劳裂纹萌生寿命的影响。研究结果表明:随着试样缺口根部半径的增大,试样的弯曲疲劳裂纹萌生寿命增加。  相似文献   

11.
The work deals with multiaxial fatigue strength of notched round bars made of 40CrMoV13.9 steel and tested under combined tension and torsion loading, both in-phase and out-of-phase. The axis-symmetric V-notches present a constant notch root radius, 1 mm, and a notch opening angle of 90°; the notch root radius is equal to 4 mm in the semi-circular notches where the strength in the high cycle fatigue regime is usually controlled by the theoretical stress concentration factor, being the notch root radius large enough to result in a notch sensitivity index equals to unity. In both geometries the diameter of the net transverse area is 12 mm.The results from multi-axial tests are discussed together with those obtained under pure tension and pure torsion loading from notched specimens with the same geometry. Altogether more than 120 new fatigue data are summarised in the present work, corresponding to a one-year of testing programme.All fatigue data are presented first in terms of nominal stress amplitudes referred to the net area and then re-analysed in terms of the mean value of the strain energy density evaluated over a given, crescent shape volume embracing the stress concentration region. For the specific steel, the radius of the control volume is found to be independent of the loading mode.  相似文献   

12.
In the notch stress intensity approach to the fatigue assessment of welded joints, the weld toe is modelled as a sharp V-notch and the local stress distributions in plane problems are given on the basis of the relevant mode I and mode II notch stress intensity factors (N-SIFs). These factors quantify the magnitude of asymptotic stress distribution obeying Williams’ solution. If the V-notch opening angle at the weld toe is constant and the mode II is not singular, the mode I N-SIF can be directly used to summarize the fatigue behaviour of welded joints. In all the other cases, varying the V-notch angle or including multiaxial loading conditions (where typically both Mode I and Mode III stress distributions are singular), the synthesis can be carried out on the basis of the mean value of the strain energy density over a well-defined volume surrounding the weld toe or the weld root. By using this scalar quantity, two fatigue scatterbands are obtained for structural steels and aluminium alloys, respectively. The material-dependent radius RC of the control volume (area) is carefully identified with reference to conventional arc welding processes.Sometimes the weld toe radius is found to be very different from zero. The local strain energy approach can be extended as it stands also to these cases, providing a gradual transition from a N-SIF-based approach to a Kt-based approach.  相似文献   

13.
In this paper generalized criteria of multiaxial random fatigue based on stress, strain and strain energy density parameters in the critical plane have been discussed. The proposed criteria reduce multiaxial state of stress to the equivalent uniaxial tension–compression or alternating bending. Relations between the coefficients occurring in the considered criteria have been derived. Thus, it is possible to take into account fatigue properties of materials under simple loading states during determination of the multiaxial fatigue life. Presented models have successfully correlated fatigue lives of cast iron GGG40 and steel 18G2A specimens under constant amplitude in‐phase and out‐of‐phase loadings including different frequencies.  相似文献   

14.
The weld toe as well as the weld root of joints acts as a geometrical notch, which decreases the fatigue strength of welded components. Local approaches used for fatigue assessment account for the local stress concentration when referring to the notch stress as a fatigue parameter. This applies also to the approaches based on the notch stress intensity factor like, for example, the averaged strain energy density, neglecting the actual notch radius and considering a sharp notch as a simplification. A uniform S‐N curve valid for different types of welded joints and failure locations was derived from re‐analyses of fatigue test results as documented in literature. The fatigue tests described in this paper aimed at validating that energy‐based S‐N curve by dedicated tests on artificially notched specimens. At first, four parameters were investigated in order to estimate their influence on the fatigue strength and to select appropriate notch geometries for the final step of the test campaign. The advantages of these tests are that both the exact notch geometry and the local stress range at the notch, including misalignment effects, were identified and considered in experimental data analysis. This paper presents the results of the rather comprehensive testing activities and comparisons with the design‐S‐N curve mentioned, yielding unexpected fatigue behaviour. This can be explained by the short crack propagation life.  相似文献   

15.
16.
A method for calculating elasto-plastic notch tip strains and stresses in bodies subjected to multiaxial loading has been presented. The method has been formulated in terms of strain energy density relationships. Two approximate formulae are derived based on the analysis of strain energy density in the notch tip region. The two formulae represent the lower and upper limits of the band within which the actual elasto-plastic notch tip strains can be found. All necessary relationships are derived for a general multiaxial stress state. The calculated notch tip strain and stress components are compared with experimental and finite element data obtained for a variety of loading conditions and materials. This method may be particularly useful for stress/strain analysis of notched components subjected to lengthy multiaxial cyclic loading histories.On leave from Warsaw University of Technology.  相似文献   

17.
An innovative numerical methodology is presented for fatigue lifetime estimation of notched bodies experiencing multiaxial cyclic loadings. In the presented methodology, an evaluation approach of the local nonproportionality factor F for notched specimens, which defines F as the ratio of the pseudoshear strain range at 45° to the maximum shear plane and the maximum shear strain range, is proposed and discussed deeply. The proposed evaluation method is incorporated into the material cyclic stress‐strain equation for purpose of describing the nonproportional hardening behavior for some material. The comparison between multiaxial elastic‐plastic finite element analysis (FEA) and experimentally measured strains for S460N steel notched specimens shows that the proposed nonproportionality factor estimation method is effective. Subsequently, the notch stresses and strains calculated utilizing multiaxial elastic‐plastic FEA are used as input data to the critical plane‐based fatigue life prediction methodology. The prediction results are satisfactory for the 7050‐T7451 aluminum alloy and GH4169 superalloy notched specimens under multiaxial cyclic loading.  相似文献   

18.
Abstract

This study extends the plastic strain energy approach to predict the fatigue life of AISI 304 stainless steel. A modified energy parameter based on the stable plastic strain energy density under tension conditions is proposed to account for the mean strain and stress effects in a low cycle fatigue regime. The fatigue life curve based on the proposed energy parameter can be obtained directly by modifying the parameters in the fatigue life curve based on the stable plastic strain energy pertaining to fully reversed cyclic loading. Hence, the proposed damage parameter provides a convenient means of evaluating fatigue life on the mean strain or stress effect. The modified energy parameter can also be used to explain the combined effect of alternating and mean strain/stress on the fatigue life. In this study, the mean strain effects on the fatigue life of AISI 304 stainless steel are examined by performing fatigue tests at different mean strain levels. The experimental results indicate that the combination of an alternating strain and a mean strain strongly influences the fatigue life. Meanwhile, it is found that the change in fatigue life is sensitive to changes in the proposed damage parameter under the condition of a constant strain amplitude at various mean strain levels. A good agreement is observed between the experimental fatigue life and the fatigue life predicted by the proposed damage parameter. The damage parameter proposed by Smith et al. (1970) is also employed to quantify the mean strain effect. The results indicate that this parameter also provides a reasonable estimate of the fatigue life of AISI 304 stainless steel. However, a simple statistical analysis confirms that the proposed damage parameter provides a better prediction of the fatigue life of AISI 304 stainless steel than the SWT parameter.  相似文献   

19.
A series of multiaxial low-cycle fatigue experiments was performed on 45 steel under non-proportional loading. The present evaluations of multiaxial low-cycle fatigue life were systematically analysed. A combined energy density and critical plane concept is proposed that considers different failure mechanisms for a shear-type failure and a tensile-type failure, and from which different damage parameters for the critical plane-strain energy density are proposed. For tensile-type failures in material 45 steel and shear-type failures in material 42CrMo steel, the new damage parameters permit a good prediction for multiaxial low-cycle fatigue failure under non-proportional loading. The currently used critical plane models are a special and simple form of the new model.  相似文献   

20.
A new computational methodology is proposed for fatigue life prediction of notched components subjected to variable amplitude multiaxial loading. In the proposed methodology, an estimation method of non‐proportionality factor (F) proposed by authors in the case of constant amplitude multiaxial loading is extended and applied to variable amplitude multiaxial loading by using Wang‐Brown's reversal counting approach. The pseudo stress correction method integrated with linear elastic finite element analysis is utilized to calculate the local elastic‐plastic stress and strain responses at the notch root. For whole local strain history, the plane with weight‐averaged maximum shear strain range is defined as the critical plane in this study. Based on the defined critical plane, a multiaxial fatigue damage model combined with Miner's linear cumulative damage law is used to predict fatigue life. The experimentally obtained fatigue data for 7050‐T7451 aluminium alloy notched shaft specimens under constant and variable amplitude multiaxial loadings are used to verify the proposed methodology and equivalent strain‐based methodology. The results show that the proposed methodology is superior to equivalent strain‐based methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号