首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
在InP基异质结InGaAsP多量子阱(MQW)结构上溅射Cu/SiO2复合层,开展了量子阱混杂(QWI)材料的实验研究。经快速退火(RTA),实现了比常规无杂质空位扩散(IFVD)方法更大的带隙波长蓝移量。在750℃、200s的退火条件下,获得最大172nm的波长蓝移;通过改变退火条件,可实现不同程度的蓝移,满足光子集成技术中不同器件对带隙波长的需求。为了验证其用于光子集成领域的可行性,利用混杂技术分别制备了宽条激光器和单片集成电吸收调制激光器(EML)。在675℃退火温度,80s、120s和200s的退火时间下分别实现了61、81和98nm的波长蓝移;并且,相应的宽条激光器的电激射光(EL)谱偏调量与其材料的光致荧光(PL)谱偏调量基本一致。在675℃、120s退火条件下,制备的EML集成器件中,电吸收调制器(EAM)和分布反馈(DFB)激光器区的蓝移量分别83nm和23.7nm,相对带隙差为59.3nm。EML集成器件在激光器注入电流为100mA、调制器零偏压时出光功率达到9.6mW;EAM施加-5V反向偏压时静态消光比达16.4dB。  相似文献   

2.
3.
量子阱无序的窗口结构InGaAs/GaAs/AlGaAs量子阱激光器   总被引:3,自引:0,他引:3  
对SiO2薄膜在快速热退火条件下引起的空位诱导InGaAs/GaAs应变量子阱无序和SrF2薄膜抑制其量子阱无序的方法进行了实验研究。并将这两种技术的结合(称为选择区域量子阱无序技术)应用于脊形波导InGaAs/GaAs/AlGaAs应变量子阱激光器,研制出具有无吸收镜面的窗口结构脊形波导量子阱激光器。该结构3μm条宽激光器的最大输出功率为340mW,和没有窗口的同样结构的量子阱激光器相比,最大输出功率提高了36%。在100mW输出功率下,发射光谱中心波长为978nm,光谱半宽为1.2nm。平行和垂直方向远场发散角分别为7.2°和30°  相似文献   

4.
采用等离子体增强化学气相沉积 (PECVD) 法在I nGaAsP多量子阱/InP缓冲层/InGaAs层上沉积SiO2薄膜,通过N2气氛下快速热退火(RTA )方法实现无杂质空位扩散(IFVD)的量子阱混杂(QWI)。对不同退火温度下量子 阱增益峰值波长的蓝移特性进行了实验摸索,在780℃@80s的退火条 件下,可以获得最大72.8nm的相对波长 蓝移量,并且发现快速热退火RTA温度低于780℃以下时,LD区的波长 蓝移量随温 度变化基本能控制在10nm以内。 通过选取合适退火条件实现了光荧光(PL)峰值波长约50nm的蓝移量, 在选区制备出合适带隙波长材料的基 础上,在LD区制作全息光栅并二次外延P型掺杂电接触层后,采用标准化浅脊波导电吸收 调制(EAM)分布反馈 激光器(EML)工艺制备了1.5μm波长的EML管芯,器件阈值为 20m A,出光功率达到2mW@90mA,静态消光比在+6V反偏压下为9.5dB。  相似文献   

5.
为了实现大功率输出,应用无杂质空位诱导量子阱混合(IFVD)方法制备带有非吸收窗口结构的915 nm半导体激光器单管.通过实验确定促进和抑制量子阱混合的Si02和SiaN4薄膜的厚度分别为300和500 nm,退火条件为800℃,90 s.最终制备出的带有非吸收窗口的激光器,与普通激光器的阈值电流和斜率效率几乎一样.但普通激光器在电流为10 A时发生灾变性光学损伤(COD)并失效,而带有非吸收窗口的激光器在电流达到13A时仍然可以正常工作,相比普通激光器其最大输出功率增加了15%.每种器件各20个在20℃,电流为9A时进行直流老化试验,普通激光器在老化时间达到100 h时全部失效,而带非吸收窗口器件在老化200 h时仅有两个失效,这表明非吸收窗口结构显著提高了器件的抗COD能力.  相似文献   

6.
InGaAs/AlGaAs量子阱中量子尺寸效应对PL谱的影响   总被引:1,自引:1,他引:0  
本文采用金属有机物化学气相淀积(MOCVD)方法设计并生长了两组InGaAs/A1GaAs应变多量子阱,量子阱的厚度分别为3nm和6nm,对其光致发光谱(PL)进行了研究,二者的发光波长分别为843nm和942nm,用有限深单量子阱理论近似计算了由于量子尺寸效应和应变效应引起的InGaAs/A1GaAs量子阱带隙的改变,这解释了两组样品室温下PL发射波长变化的原因。  相似文献   

7.
为提高940nm半导体激光器抗灾变性光学损伤(COD)能力,采用无杂质空位量子阱混杂技术制备了带有无吸收窗口的940nm GaInP/GaAsP/GaInAs半导体激光器。借助光致发光光谱分析了退火温度和介质膜厚度对GaInP/GaAsP/GaInAs单量子阱混杂的影响;通过电化学电容-电压(EC-V)方法检测了经高温退火后激光器外延片的掺杂浓度分布的变化情况。实验发现,在875℃快速热退火条件下,带有磁控溅射法制备的200nm厚的SiO2盖层样品发生蓝移达29.8nm,而电子束蒸发法制备的200nm厚TiO2样品在相同退火条件下蓝移量仅为4.3nm。两种方法分别对蓝移起到很好的促进和抑制作用。将优化后的条件用于带有窗口结构的激光器器件制备,其抗COD能力提高了1.6倍。  相似文献   

8.
研究了Cu/SiO_2逐层沉积增强的无杂质空位诱导InGaAsP/InGaAsP多量子阱混杂(QWI)行为。在多量子阱(MQW)外延片表面,采用等离子体增强的化学气相沉积(PECVD)不同厚度的SiO_2,然后溅射5 nm Cu,在不同温度下进行快速热退火(RTA)诱发量子阱混杂。通过光荧光(PL)谱表征样品在QWI前后的变化。实验结果表明,当RTA温度小于700℃时,PL谱峰值波长只有微移,且变化与其他参数关系不大;当RTA温度大于700℃时,PL谱峰值波长移动与介质层厚度和RTA时间都密切相关,当SiO_2厚度为200 nm,退火温度为750℃,时间为200 s时,可获得54.3 nm的最大波长蓝移。该种QWI方法能够诱导InGaAsP MQW带隙移动,QWI效果与InGaAsP MQW中原子互扩散激活能、互扩散原子密度以及在RTA过程中热应力有关。  相似文献   

9.
方俊  孙令  刘洁 《半导体光电》2018,39(5):607-611,653
对As2和As4两种不同分子态下利用分子束外延技术(MBE)生长的单层AlGaAs薄膜和GaAs基InGaAs/AlGaAs量子阱红外探测器(QWIP)的性能进行了研究,发现As2条件下生长的单层AlGaAs材料荧光强度更大、深能级缺陷密度更低;相对于As4较为复杂的吸附、生长机制引入的缺陷,在As2条件下生长的InGaAs/AlGaAs QWIP具有更低的暗电流密度、更好的黑体响应、更高的比探测率和更优异的器件均匀性。生长制备的InGaAs/AlGaAs QWIP在60K的工作温度、-2V偏压下,暗电流密度低至7.8nA/cm2,光谱响应峰值波长为3.59μm,4V偏压下峰值探测率达到1.7×1011 cm·Hz1/2·W-1。另外,通过As元素的不同分子态下InGaAs/AlGaAs QWIP光响应谱峰位的移动可以推断出As元素的不同分子态也会影响In的并入速率。  相似文献   

10.
白一鸣  王俊  陈诺夫 《微纳电子技术》2011,48(3):146-149,158
从理论上设计优化了高效率808 nm GaAsP/AlGaAs张应变量子阱激光二极管外延材料的量子阱结构和波导结构参数,并采用低压金属有机气相外延技术实验制备了外延材料.将制作的芯片解理成不同腔长,测试得到外延材料的内损耗系数和内量子效率分别为0.82 cm-1和93.6 %.把腔长为900 μm的单巴条芯片封装在热传...  相似文献   

11.
采用等离子体增强化学气相沉积(PECVD)技术沉积含P电介质薄膜,用于无杂质空穴扩散(IFVD)技术中InGaAsP-InP MQW结构中新的包封层,替代传统的SiO2层。经X射线光电子谱(XPS)研究证明,该膜就是SiOP结构。快速退火(RTA)研究表明,该膜结构基本稳定,但膜中P原子存在明显扩散,它增强了InPMQW结构中In原子的外扩,却抑制了Ga原子的外扩。这些都明显区别于常规SiO2膜的性质。  相似文献   

12.
Post-growth annealing is shown to improve the laser diode quality of GaAs/AlGaAs graded-index separate confinement heterostructure quantum well laser diode structures grown at a nonoptimal substrate temperature lower than 680°C by molecular beam epitaxy. Reduction by a factor of up to three in the threshold current was accompanied by a reduction in the interface trap density. The reduced threshold current is still higher than that of laser diodes grown at the optimal temperatures which are between 680 and 695°C. The improvement in laser diode performance is ascribed to the reduction of interface nonradiative recombination centers.  相似文献   

13.
In these experiments impurity-induced layer disordering (IILD) utilizing chemical reduction of SiO2 by Al (from Al0.8Ga0.2As) is employed to generate Si and O to effect layer disordering. The SiO2-Al0.8Ga0.2As reaction is studied with respect to annealing ambient. By controlling the extent of disordering via As4 overpressure, closely spaced (∼1μm) Si-O IILD buried heterostructure lasers can be optically coupled or uncoupled. Direct observation of O incorporation into the buried layers is shown using secondary ion mass spectroscopy (SIMS). The thermal stability of separate-confinement AlyGa1−yAs-GaAs-InxGa1−xAs quantum well heterostructure (QWH) laser crystals is investigated using SIMS, transmission electron microscopy (TEM), and photoluminescence (PL) measurements. The data show that the thermal stability of a strained-layer In0.1Ga0.9As quantum well (QW) is strongly dependent upon: (1) the layer thickness and heterointerfaces of the AlyGa1−yAs-GaAs waveguide layers located directly above and below the QW, (2) the type of surface encapsulant employed, and (3) the annealing ambient. Narrow single-stripe (<2μm) lasers fabricated via Si-O diffusion and layer disordering exhibit low threshold currents (Ith ∼ 4 mA) and differential quantum efficiencies,η, of 22% per facet under continuous (cw) room-temperature operation.  相似文献   

14.
The change of spectrum of the AlGaAs/GaAs single quantum well laser diode is measured under the application of uniform uniaxial in-plane tensile and compressive stress. In the range of the tensile stress we apply (up to 597 MPa), the wavelength increases linearly at a rate of 5.3 nm GPa1. The energy band gap decreases with the tensile stress with the slope of −10 meV GPa−1, which is close to the theoretical change of the heavy hole band edge with respect to the conduction band edge. There is a shorter wavelength peak existing on the spectrum as the tensile stress increases, suggesting a transition from the conduction band to a higher energy valence band. For the compressive stress (up to −516 MPa), the wavelength decreases with the stress, but it shows an abrupt reduction from −162 to −200 MPa. The threshold current also varies as a result of the change of the energy band structure.  相似文献   

15.
Selective-area growth and regrowth using conventional atmospheric pressure metalorganic chemical vapor deposition is investigated for wavelength tuning in strained layer InxGa1-xAsGaAs-Aly Ga1-yAs quantum well lasers. Growth inhibition from a silicon dioxide mask is the mechanism used for the selective-area growth rate enhancement. By varying the width of the oxide stripe opening, differences in the growth rate yield different quantum well thicknesses, and hence different lasing wavelengths for devices on the same wafer. Both two-and three-step growth processes are utilized for selective-area epitaxy of strained layer InxGa1-xAs-GaAs quantum well active regions, with lasers successfully fabricated from the three-step growth. Scanning electron microscopy and transmission electron microscopy indicate that the absence of an oxide mask during AlyGa1-yAs growth is essential for successful device operation. A wide wavelength tuning range of over 630Å is achieved for lasers grown on the same substrate.  相似文献   

16.
马琳  冯士维  张亚民  邓兵  岳元 《半导体学报》2014,35(9):094006-5
本文通过实验测量和仿真研究了不同漏源电压对AlGaAs/InGaAs PHEMTs热阻的影响。结果表明,等功率下,热阻随着漏源电压的减小呈下降趋势,并且小电压大电流下热阻值最小。应用结构函数法可以分别提取出芯片级和封装级的热阻值。模拟结果表明,沟道中电场最强的地方出现在靠近漏一侧的栅边缘,相对较小的漏源电压产生的电场也较低,这就是导致等功率下热阻随漏源电压下降的原因。  相似文献   

17.
Material quality is an essential prerequisite and a major challenge for the fabrication of high-power, 980-nm, strained-quantum-well (SQW) InGaAs lasers. We report our work aimed at metal-organic chemical vapor deposition (MOCVD) growth optimization and epitaxial quality analysis of various graded-index separate confinement heterostructure (GRINSCH) QW AlGaAs/InGaAs laser structures. Systematic investigation of doping level control and minimization of oxygen incorporation in AlGaAs were performed. Background oxygen levels of 1015 cm−3 were obtained with n-(Si) and p-(C) doping concentrations as high as 1 × 1018 cm−3 and 3 × 1018 cm−3, respectively, for Al0.4Ga0.6As layers. Double-crystal x-ray (DCXR), room-temperature photoluminescence (PL) mapping, Hall effect measurements, and secondary ion-mass spectroscopy (SIMS) techniques were used to evaluate material quality. A record, multimode, pulsed output power of 52.1 W has been obtained from 100-μm × 2-mm broad-stripe lasers made from these materials. The devices demonstrate low threshold current, low cavity losses, and kink-free light-current characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号