首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Epigenetic modification is implicated in the choice of the X chromosome to be inactivated in the mouse. In order to gain more insight into the nature of such modification, we carried out a series of experiments using undifferentiated mouse cell lines as a model system. Not only the paternally derived X (XP) chromosome, but the maternally derived one (XM) was inactivated in the outer layer of the balloon-like cystic embryoid body probably corresponding to the yolk sac endoderm of the post-implantation embryo in which XP is preferentially inactivated. Hence, it is likely that the imprint responsible for the nonrandom XP inactivation in early mouse development has been erased or masked in female ES cells. CpG sites in the 5' region of the Xist gene were partially methylated in female ES and EG and parthenogenetic ES cell lines as in the female somatic cell in which the silent Xist allele on the active X is fully methylated, whereas the expressed allele on the inactive X is completely unmethylated. In the case of undifferentiated ES cells, however, methylation was not differential between two Xist alleles. This observation was supported by the demonstration that single-cell clones derived from female ES cell lines were not characterized by either allele specific Xist methylation or nonrandom X inactivation upon cell differentiation. Apparently these findings are at variance with the view that Xist expression and X inactivation are controlled by preemptive methylation in undifferentiated ES cells and probably in epiblast.  相似文献   

4.
5.
6.
The fragile X syndrome is commonly associated with mutant alleles of the FMR1 gene that are hypermethylated and have large expansions of CGG repeats. We present data here on the replication timing of FMR1 that confirm predictions of delayed replication of alleles from affected males. The normal FMR1 allele replicates late in S phase, while alleles from affected males replicate later, the major peak of replication occurring in the flow cytometry fraction usually referred to as G2/M. The delayed timing of replication is not the direct result of a single replication fork stalling at the expanded CGG repeat, because delayed replication was observed for regions on both sides of the repeat. The domain of altered replication timing includes sites at least 150 kb 5' and 34 kb 3' of the repeat, indicating that genes in addition to FMR1 may be affected.  相似文献   

7.
FRA3B at 3p14.2 is the most active of the common fragile sites in the human genome and is expressed when cells are exposed to the DNA replication inhibitor, aphidicolin. Several lines of evidence suggest that fragile sites are regions of late replication. To elucidate the relationship between the timing of replication across the FRA3B region and its corresponding fragility, we labeled cells with 5-bromo-2'-deoxyuridine (BrdU) and adopted an immunofluorescent procedure to visualize late replicating DNA (BrdU-substituted DNA) in metaphase chromosomes. We also chose 21 markers along the FRA3B region and analyzed the timing of replication using BrdU-labeled DNA from different stages of the cell cycle sorted by flow cytometry. Our results show that there are two distinct alleles that replicate at different stages in the cell cycle and that breaks/gaps preferentially occurred on the chromosome 3 with the late replication allele. These results provide direct evidence that allele-specific late replication is involved in the fragility of the most active common fragile site, FRA3B.  相似文献   

8.
9.
To clarify the sequence of events that ultimately achieves the nonrandom inactivation of the paternally inherited X chromosome in postpartum female mice heterozygous for T(X;16)16H, we set out to examine the expression of Xist alleles and the X-linked HMG-lacZ transgene in embryos recovered at the egg cylinder stage. Lack of expression of the Xist(b) allele on the 16X translocation chromosome in the embryonic region of 7.5 d postcoitum (dpc) X16/X(n)Xist(a);16(X)Xist(b)/16 embryos strongly suggested the occurrence of nonrandom inactivation in favor of the normal X chromosome. The simplest explanation would be biased choice, followed by postinactivation selection against genetically unbalanced cells. However, the frequency and distribution of beta-galactosidase-positive cells in X16/X(n)lacZ;16X/16 embryos at 6.5 and 7.5 dpc, together with earlier cytogenetic data, raised an intriguing possibility that the majority of 16X chromosomes were prevented from completing the inactivation process, when they had been chosen to be silenced. Phenotypes of female mice carrying a spontaneous recombination between Xn and 16X in the segment defined by the T16H breakpoint and the X-linked Ta locus suggested that the nonrandomness was brought about by disruption of an X-chromosomal sequence or structure at the translocation breakpoint.  相似文献   

10.
11.
12.
X chromosome inactivation in mammals was first described over 30 years ago. The biological problem is how to achieve gene dosage equivalence between XX females and XY males; the solution is to genetically silence one whole X chromosome in each cell of the early developing female embryo. The molecular mechanism by which this is achieved, however, remains a mystery. Recently, through the discovery of the Xist gene, it appears that we may be on the brink of learning how this unique phenomenon is mediated. Here, I discuss the developmental regulation of X inactivation and the candidacy of Xist as the X chromosome inactivation centre, with particular reference to its possible role in the initiation, spread and maintenance of X inactivation.  相似文献   

13.
To understand how gene expression patterns are established on the inactive X chromosome during development, we have studied the murine gene Smcx, which is expressed from both the active and inactive mouse X chromosomes. In all tissues assayed, Smcx only partially escapes X inactivation, with expression levels from the inactive X allele approximately 30-65% that of the active X allele. Additionally, inactive X expression levels differed between extraembryonic and embryonic tissues and among different tissues from newborn and adult mice. Imprinted extraembryonic tissue had the lowest levels of inactive X Smcx expression, whereas the highest levels were in heart. These data suggest that the chromosomal basis of X inactivation differs among tissues, perhaps reflecting differences in the timing or regulation of inactivation in these cell lineages.  相似文献   

14.
Previous studies have shown that the chloride channel gene Clc4 is X-linked and subject to X inactivation in Mus spretus, but that the same gene is autosomal in laboratory strains of mice. This exception to the conservation of linkage of the X chromosome in one of two interfertile mouse species was exploited to compare expression of Clc4 from the X chromosome to that from the autosome. Clc4 was found to be highly expressed in brain tissues of both mouse species. Quantitative analyses of species-specific expression of Clc4 in brain tissues from mice resulting from M. spretus x laboratory strain crosses, demonstrate that each autosomal locus has half the level of Clc4 expression as compared with the single active X-linked locus. In contrast expression of another chloride channel gene, Clc3, which is autosomal in both mouse species is equal between alleles in F1 animals. There is no evidence of imprinting of the Clc4 autosomal locus. These results are consistent with Ohno's hypothesis of an evolutionary requirement for a higher expression of genes on the single active X chromosome to maintain balance with autosomal gene expression [Ohno, S. (1967) Sex Chromosomes and Sex-Linked Genes (Springer, Berlin)].  相似文献   

15.
16.
A number of human TCR V beta gene segments are reported to be polymorphic, with alleles differing by one or a small number of amino acid substitutions. In the absence of detailed structural information regarding the interaction of specific positions in the TCR with Ag or MHC, the significance of such variation is difficult to assess. In this report the relative use of the two common alleles of the human V beta 6.7 gene, 6.7a and 6.7b, which differ by two non-conservative amino acid substitutions, and the use of two common alleles of the V beta 12.2 gene, which differ by only silent substitutions, were measured in PBL derived from individuals heterozygous for these alleles. Equal use of V beta 12.2 alleles was observed, consistent with the inability of selection mechanisms to discriminate between the products of these alleles that are indistinguishable at the amino acid level. However, statistically significant skewing in the use of V beta 6.7 alleles was observed in 15 of 16 individuals studied. Expression levels for each allele ranged from 16 to 84% of the total V beta 6.7 signal in heterozygous individuals, with either the 6.7a or the 6.7b allele predominant in different individuals. Based on segregation studies in families, it seems unlikely that other unidentified polymorphism in the TCR beta locus, such as in the V beta 6.7 promoter, was responsible for the differential allele expression. Family studies provided no evidence for an association between specific HLA haplotypes and V beta 6.7 allele use. These results indicate that even modest allelic variation in human TCR V beta coding regions can have a significant impact on the expression of human V beta genes in the peripheral repertoire.  相似文献   

17.
The FRA3B at 3p14.2 is the most highly expressed of the common fragile sites observed when DNA replication is perturbed by aphidicolin or folate stress. The molecular basis for chromosome fragility at FRA3B is unknown. In contrast to the rare fragile sites, including FRAXA, no repeat motifs, such as trinucleotide repeats, have been identified within FRA3B. Several lines of evidence suggest that fragile sites are regions of DNA whose replication is unusually sensitive to interference. We have used fluorescence in situ hybridization to determine the relative timing of replication of FRA3B sequences. Our studies revealed that FRA3B sequences are late replicating. Exposure to aphidicolin, an inhibitor of both DNA polymerase alpha and delta, results in a reproducible delay in the timing of replication, and some cells enter G2without having completed replication of FRA3B sequences. Our results support a model in which common fragile sites are sequences that initiate replication late in S phase or are slow to replicate, and the chromosomal breaks and gaps observed in metaphase cells are due to unreplicated DNA.  相似文献   

18.
DNA replication in mammalian cells is a precisely controlled physical and temporal process, likely involving cis-acting elements that control the region(s) from which replication initiates. In B cells, previous studies showed replication timing to be early throughout the immunoglobulin heavy chain (Igh) locus. The implication from replication timing studies in the B-cell line MPC11 was that early replication of the Igh locus was regulated by sequences downstream of the C alpha gene. A potential candidate for these replication control sequences was the 3' regulatory region of the Igh locus. Our results demonstrate, however, that the Igh locus maintains early replication in a B-cell line in which the 3' regulatory region has been deleted from one allele, thus indicating that replication timing of the locus is independent of this region. In non-B cells (murine erythroleukemia cells [MEL]), previous studies of segments within the mouse Igh locus demonstrated that DNA replication likely initiated downstream of the Igh gene cluster. Here we use recently cloned DNA to demonstrate that segments located sequentially downstream of the Igh 3' regulatory region continue to replicate progressively earlier in S phase in MEL. Furthermore, analysis by two-dimensional gel electrophoresis indicates that replication forks proceed exclusively in the 3'-to-5' direction through the region 3' of the Igh locus. Extrapolation from these data predicts that initiation of DNA replication occurs in MEL at one or more sites within a 90-kb interval located between 40 and 130 kb downstream of the 3' regulatory region.  相似文献   

19.
BACKGROUND: In vegetatively growing diploid strains of the yeast Saccharomyces cerevisiae, homologous chromosomes appear to be paired via multiple interstitial interactions, likely as a regular feature of the diploid lifestyle. We have previously suggested that this pairing is guided by direct physical interactions between intact DNA duplexes in nuclease-hypersensitive regions and that homology is sensed directly at the DNA level. RESULTS: As a first test of this idea we have examined the level of DNase I sensitivity at a prominent nuclease-hypersensitive site in mitotic chromatin in strains that are either homozygous or heterozygous for a pair of alleles at this site. We find that the degree of nuclease sensitivity at this site on a given (maternal or paternal) chromosome can vary depending upon whether the homologue carries the same allele or the different allele. The data are suggestive that nuclease sensitivity is higher in the former case than in the latter, as though nuclease hypersensitivity might be increased when the two alleles match as compared to when they do not. CONCLUSIONS: Formally, these observations suggest that homologous chromosomes can communicate via a mechanism that senses the status of the assayed nuclease-hypersensitive site with resultant changes in chromatin structure at that site. The observed pattern of effects is fully compatible with direct physical interactions between homologues at nuclease-hypersensitive regions, but alternative scenarios also can be envisioned. Since DNase I hypersensitive sites occur in many important regions of chromosomes, homology-dependent interactions involving such regions could potentially affect diverse processes including gene expression (e.g. transvection), chromosome organization, domain structure, and/or DNA replication patterns.  相似文献   

20.
Two mouse YACs, PA-2 and PA-3, contain the Xist gene and are 460 kb and 3.3 Mb long respectively. While PA-2 is non-chimeric, PA-3 contains a substantial proportion of non-contiguous DNA. As a prerequisite to functional studies of the role of this region in X inactivation, we have created a deletion series of YACs that are spaced at approximately 50 kb intervals and were able to eliminate the unwanted chimeric sequences in YAC PA-3. For this purpose, we have constructed mouse B1 fragmentation vectors based on those described for human Alu fragmentation. Having created this series of YAC deletion derivatives, we were able to eliminate efficiently the 10-15% aberrant YACs that arise during the course of a fragmentation experiment by assessing their marker content. The overlap and the opposite orientation of the two YAC inserts permitted the creation of deletions on both sides of the 500 kb region around Xist. The use of this series of YACs in a biological assay will help us define the extent of the sequences necessary to bring about X chromosome inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号