首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
综述了石英纤维、碳化硅纤维、氮化硅纤维、氮化硼纤维、氧化铝纤维、莫来石纤维、硅酸铝纤维等不同种类陶瓷纤维的制备技术研究现状和技术难点。石英纤维主要采用溶胶-凝胶法制备,需要纤维表面引入氮化硼涂层改善其界面析晶行为;碳化硅纤维主要采用前驱体转化法和活性炭转化法制备,需进行表面涂层增强其性能;氮化硅纤维主要采用溶胶-凝胶法和碳热还原氮化法制备;氮化硼纤维主要采用无机转化法和有机前驱体法制备;溶胶-凝胶法是氧化铝、莫来石和硅酸铝纤维的主要制备方法。未来国内陶瓷纤维研究应进一步提高纤维性能、开发新品种、提高制备技术水平、加强应用研究和拓展应用领域。  相似文献   

2.
合成陶瓷纤维材料的制备工艺及发展趋势   总被引:1,自引:0,他引:1  
作为先进复合材料的增强剂,高性能陶瓷纤维日益引起材料研究人员的广泛关注,并导致了纤维制备方法的不断发展。与其他制备方法相比,先驱体转化法更适用于制备细径、组成结构可调的陶瓷纤维,其中溶胶-凝胶法在制备陶瓷纤维方面已经显示出其优越性,并取得了巨大进展。论述了中国合成陶瓷纤维的起源、种类、性能以及应用,着重介绍了陶瓷纤维的制备方法,并指出了陶瓷纤维的发展趋势。  相似文献   

3.
介绍了耐高温氮化物陶瓷纤维的种类及制备方法即有机聚合物先驱体转化法;综述了Si3N4,BN,SiBN,SiBN(C)陶瓷纤维的研究进展;重点介绍了SiBN(C)陶瓷纤维的研究现状,并与SiC纤维进行性能对比.指出具有耐高温、透波性等功能结构一体化的SiBN(C)陶瓷纤维是陶瓷纤维的重要发展方向,简化先驱体的合成过程及降...  相似文献   

4.
以天然硅灰石、滑石和石英砂为主要原料,以稀土氧化物作为添加剂,采用熔融-喷吹法制备了CaO-MgO-SiO2系生物可溶性陶瓷纤维。对熔体的黏度以及纤维的生物可溶性和高温析晶行为进行了研究。结果表明:添加稀土氧化物可以大大拓宽熔体成纤操作的温度范围;稀土氧化物的引入导致CaO-MgO-SiO2系生物可溶性陶瓷纤维在人体肺液中的溶解速率有所下降,但没有改变其生物可溶属性;引入稀土氧化物加强了CaO-MgO-SiO2系生物可溶性陶瓷纤维的网络结构,抑制了其高温析晶行为。  相似文献   

5.
陶瓷纤维多孔材料具有轻质、比强度高、导热低、耐热性能好等特点,因此广泛应用到航空航天,汽车制造,建筑材料等领域。陶瓷纤维多孔材料的传统制备方法有真空抽滤法,凝胶注模成型法,模压成型法等,而最近发展的新型制备技术-冰模板法(冷冻铸造法)由于能够精确控制多孔纤维材料微观结构而备受关注。重点综述了冰模板法制备陶瓷纤维多孔材料的研究现状,重点介绍了冷冻凝胶法、纤维自组装冷冻法和超声雾化冷冻法等冷冻铸造技术。  相似文献   

6.
氮化硼陶瓷纤维是一种正在发展的新型高性能材料,然而传统的高温法很难制备高质量的氮化硼陶瓷纤维材料,只能通过前驱体转化法实现。概述了氮化硼陶瓷纤维的合成路线以及各种前驱体制备氮化硼陶瓷纤维的优缺点,并对前驱体法制备氮化硼陶瓷纤维的发展趋势做了展望。  相似文献   

7.
先驱体转化含铝碳化硅陶瓷纤维具有高强度、高模量、耐高温、抗氧化等特性,是高温陶瓷基复合材料理想的增强体之一。基于含铝Si C陶瓷纤维的制备工艺路线,从聚铝碳硅烷(PACS)的合成方法及其机理、PACS纤维不熔化处理方法和控制Si(Al)C陶瓷纤维缺陷的研究现状方面综述了先驱体转化含铝Si C陶瓷纤维制备的最新研究进展。讨论了现有PACS合成路线和不熔化处理工艺的优缺点。此外,围绕含铝Si C陶瓷纤维的制备路线,认为后续可持续关注的主要有探索新的PACS合成路线、高效不熔化处理方法和提高Si(Al)C陶瓷纤维力学性能的方法等方面。  相似文献   

8.
采用溶胶-凝胶法结合静电纺丝技术制备了直径20~60 nm的超细氧化锢(In2O3)纳米陶瓷纤维及纳米陶瓷纤维无纺布.采用XRD,IR,SEM,HR-TEM,TGA等分析方法对纳米纤维的形貌和显微结构进行了表征,并研究了其气敏特性.由700℃下煅烧的该超细In2O3纳米纤维所制备的气敏元件具有较好的反应和选择性,对甲醛...  相似文献   

9.
静电纺陶瓷纤维的研究进展   总被引:1,自引:0,他引:1  
介绍了采用静电纺丝方法制备各种金属氧化物陶瓷纤维的研究现状,包括硅、铝、钛、铟的氧化物等,并简要介绍了静电纺陶瓷纤维的性能、制备方法,特别是溶胶-凝胶合成与静电纺丝结合的方法及过程当中的一些影响因素。对目前静电纺陶瓷纤维的发展现状及应用进行了概述并对静电纺陶瓷纤维的发展前景进行了展望。  相似文献   

10.
采用溶胶-凝胶法结合静电纺丝技术制备了直径20~60 nm的超细氧化铟(In2O3)纳米陶瓷纤维及纳米陶瓷纤维无纺布。采用XRD,IR,SEM,HR-TEM,TGA等分析方法对纳米纤维的形貌和显微结构进行了表征,并研究了其气敏特性。由700℃下煅烧的该超细In2O3纳米纤维所制备的气敏元件具有较好的反应和选择性,对甲醛气体表现出较快的响应和恢复速度。  相似文献   

11.
SiBOC ceramic fibers have been successfully prepared from single-source polyborosiloxanes which are synthesized from polymethylethoxysiloxane and B(OH)3 via a sol-gel route. The morphological change, structural evolution and crystallization behavior of fibers as a function of thermal treatment are studied by several techniques. Polyborosiloxane sols exhibit remarkable spinnability, in which B atoms are homogenously incorporated into the linear Si-O-Si skeleton via Si-O-B bridges. SiBOC ceramic fibers with diameters of about 10 μm are prepared with high ceramic yield ranging from 80.5 to 86%. Although a continuous structural evolution occurs with increasing pyrolysis temperature, the SiBOC ceramic fiber with B/Si atom ratio of 0.14 is thermal stable at 1500 °C. The thermolysis and crystallization behaviors are closely related to the boron content. The tendency toward crystallization of SiC and graphitization of free carbon is strengthened with the increase of boron content and pyrolysis temperature.  相似文献   

12.
This article reports a novel method for three-dimensional (3D) printing of continuous fibers into ceramics to improve the mechanical properties of printed ceramics, which is difficult in other 3D printing technologies. The ceramics were derived by pyrolysis of thermoplastic ceramic precursor feedstocks, which were prepared by two methods. One is homogeneously mixing thermoplastic resins and ceramic precursors. The feedstocks prepared by this method exhibit good thermoplastic properties and can be extruded into filaments. Ceramics were obtained by heating the feedstocks to 1100°C in argon atmosphere. The ceramics were amorphous and remained stable during 1100-1300°C; at 1400°C they decomposed into β–SiC with simultaneous volatile gas generation. Above 1400°C, their quality decreased significantly due to cracking of ceramic skeletons. The other method is directly heating, extruding and printing the ceramic precursor. The precursors showed good printability and complex ceramic structures were printed with continuous carbon fibers inside. The continuous carbon fibers improved the flexural strength of pyrolytic ceramics, which is about 7.6 times better than that of the ceramics without fibers. The novel method unravels the potential of 3D printing of continuous fibers into ceramics with complex lightweight structures to improve the strength.  相似文献   

13.
Given the superior thermal stability and electromagnetic features, continuous Si–B–(C)–N ceramic fibers have displayed great potential to fulfill the increasing demand for the high-temperature structural and functional materials. Manufacture of such ceramic fibers depends heavily upon the design of processable polymer precursors. Herein, a class of polyborosilazanes (PBSZs) with high spinnability were created through a facile one-pot synthesis. The trade-off between spinnability and ceramic yield of PBSZs was overcome by using heptamethyldisilazane and hexamethyldisilazane as the co-condensing agents to polymerize silicon and boron chloride monomers. The optimal PBSZs can fabricate continuous Si–B–C–N fibers with homogeneous diameter of 7.9 ± 0.5 μm and high ceramic yield of 80 wt%. Experimental characterization and quantum chemical computation revealed the mechanistic pictures of the impact of pendant groups on the polycondensation, melt spinning, and pyrolyzing process. These insights improve our understanding of spinnable pre-ceramic polymers for exploiting high-performance nitride ceramic fibers.  相似文献   

14.
Ceramic matrix composites (CMCs) are designed to overcome the main drawback of monolithic ceramics, namely their brittleness, and are constituently expressed as a continuous phase, or matrix, a distributed phase, commonly referred to as the reinforcing fibers, and also an interphase layer or coating layer between them. In this regard, there is a necessity to understand the principles for choosing the reinforcing fibers and designing the fiber–matrix interfaces. Hence, an attempt is made to review the recent progresses on ceramic micro-nano fibers and their effect on the interfaces in CMCs. The development trend for CMCs is discussed, especially the future CMCs based on ceramic micro-nano fibers, including the strengthening and interface construction concerning with these fibers.  相似文献   

15.
The strength distribution of fibers within a two-dimensional laminate ceramic/ceramic composite consisting of an eight harness satin weave of Nicalon continuous fibers within a chemically vapor infiltrated SiC matrix was determined from analysis of the fracture mirrors of the fibers. Comparison of the fiber strengths and the Weibull moduli with those for Nicalon fibers prior to incorporation into composites suggests that possible fiber damage may occur either during the weaving or during another stage of the composite manufacture. Observations also indicate that it is the higher-strength fibers which experience the greatest extent of fiber pullout and thus make a larger contribution to the overall composite toughness than do the weaker fibers.  相似文献   

16.
本文针对目前国内性能陶瓷纤维的发展现状,对SiC系列纤维、Si-M-C-O系列纤维,Si3N4纤维的发展概况及遇到的困难作了详细的回顾和概括,对高性能陶瓷纤维的发展和发展方向进行了较为深刻的探讨。  相似文献   

17.
In order to evaluate the benefits of continuous liquid phase coating (CLPC) for carbon fibers, coated fibers as well as uncoated fibers were applied in the preparation of unidirectionally reinforced ceramic matrix composites (CMCs) with polysiloxane based matrix. Fibers coated with precursor based ceramic or carbon coatings were transferred into prepregs by continuous fiber impregnation with liquid polysiloxane and filament winding. The wet prepregs were cut to shape, laminated and then pressed and cured in the mold at 150 °C for 1 h. The cured polymeric matrix composites were calcined and densified by subsequent precursor infiltration/calcination cycles. The flexural strength of the CMCs was measured by 4-point bending tests, the microstructure was determined by optical and scanning electron microscopy. The application of CLPC coated fibers led to a significant improvement in composite strength and young's modulus compared to identical reference samples with uncoated carbon fibers.  相似文献   

18.
《Ceramics International》2020,46(14):22774-22780
Ceramic alumina nanofibers were prepared by plasma-assisted calcination (PAC) using atmospheric pressure plasma. Electrospun polyvinyl pyrrolidone/aluminium butoxide fibers were pre-treated by plasma generated in ambient air using a special type of coplanar dielectric barrier discharge. The effect of plasma on fibers and structural, chemical and crystalline properties of obtained ceramic nanofibers were characterized using X-Ray Photoelectron Spectroscopy and Scanning Electron Microscopy, Energy-dispersive X-ray Spectroscopy and X-Ray Diffraction. Thermogravimetric and differential thermal analysis were used for the study of thermal behaviour of untreated and plasma-treated samples. The ceramic fibers prepared by PAC exhibit suitable chemical composition, higher porosity, high length of fibers and better crystalline properties with simultaneous simplifying of the sintering process. The plasma pre-treatment of fibers results in a shortening of following thermal treatment, decrease of the required temperature and excludes a slow temperature increase as prevention of fibrous structure degradation typical in preparation of ceramic fibers by polymer-template techniques.  相似文献   

19.
During the last years, several groups across the world have concentrated on the adaptation and further development of electrospinning (e-spinning) to enable ceramic fiber synthesis. Thus far, more than 20 ceramic systems have been synthesized as micro- and nanofibers. These fibers can be amorphous, polycrystalline, dense, porous, or hollow. This article reviews the experimental and theoretical basis of ceramic e-spinning. Furthermore, it introduces an expanded electro hydrodynamic (EHD) theory that allows the prediction of fired fiber diameter for lanthanum cuprate fibers. It is hypothesized that this expanded EHD theory is applicable to most ceramic e-spinning systems. Furthermore, electroceramic nanofibers produced via e-spinning are presented in detail along with an overview of electrospun ceramic fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号