共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
针对传统比例积分微分(PID)控制LLC谐振变换器存在抗干扰能力差、动态性能不佳等问题,提出采用改进粒子群算法优化(PSO)自抗扰控制(ADRC)模型参数,达到优化LLC谐振变换器控制目的。为解耦自抗扰系统参数,对LLC谐振变换器进行小信号建模,将拟建ADRC模型视为二自由度系统,利用PID与ADRC传递函数存在的等效关系,使用频域法获得ADRC模型参数初始值。针对传统粒子易在全局最优位置周边产生振荡现象,采用线性递减惯性权重(LDIW)的粒子群在扩展范围内对ADRC模型参数进行优选重组,提升整定效度。实验证明优化后LLC谐振变换器ADRC动态性能明显改善。启动时电压到达标值减少5 ms,负载突变时电压恢复稳态减少2 ms。 相似文献
3.
4.
针对异步电机矢量控制系统在负载变化和电机参数变化时转速易受较大影响的问题,研究了采用自抗扰控制器(ADRC)对负载扰动和电机参数变化进行估计和补偿的方法。根据自抗扰控制器的数学特征和异步电机的数学模型,采用扩张状态观测器(ESO)对电机模型的参数摄动和变量耦合项进行观测并补偿,确定了矢量控制系统中自抗扰转速环控制器、自抗扰磁链环控制器、自抗扰d轴电流环控制器和自抗扰q轴电流环控制器的形式。仿真和实验结果表明,与传统的比例积分控制器(PI)相比,ADRC控制器对系统负载扰动和电机参数变化具有较好的鲁棒性和动态性能。 相似文献
5.
基于RBF神经网络的伺服系统自适应自抗扰控制 总被引:1,自引:0,他引:1
针对伺服系统中存在的非线性,提出了一种基于RBF神经网络的自适应自抗扰控制(ADRC)方法,设计了基于RBF神经网络的自适应自抗扰ADRC控制器。通过仿真和实验验证了该方法能有效地克服采用PD控制时系统的超速超回现象和爬行现象,在参数变化时具有较好的稳态性能和较强的鲁棒性。 相似文献
6.
7.
为提升机载光电稳定平台的视轴稳定精度与鲁棒性,提出了一种模糊非奇异快速终端滑模自抗扰控制策略。首先,采用非奇异快速终端滑模面提升系统状态在滑动阶段的收敛速度。其次,通过设计带模糊校正项的快速幂次趋近律来对抖振进行抑制,模糊逻辑的引入能使控制器参数能根据误差变化自整定,在此基础上,结合线性扩张状态观测器来增强系统的扰动抑制能力。然后,利用Lyapunov方法对系统进行了稳定性分析。最后,在扰动及参数摄动下进行了仿真对比实验,仿真实验结果表明,所提方法相较于另外4种控制算法而言,基于本方法的系统具备更强的鲁棒性。 相似文献
8.
间隙非线性具有多值性和方向性,普遍存在于伺服系统中,可严重影响伺服系统的控制性能。为此,本文采用自抗扰控制器对伺服系统的输出间隙进行补偿,以抑制间隙非线性对系统性能的影响。自抗扰控制器由跟踪微分器、扩张状态观测器、非线性反馈控制律三部分组成,其中扩张状态观测器可对间隙引起的输出扰动进行估计,非线性反馈控制律则对估计出的扰动进行补偿。与相关研究相比,自抗扰控制器形式简单,易于工程实现,且具有较高的间隙补偿精度。仿真结果表明,上述方法是可行的。 相似文献
9.
10.
11.
12.
13.
14.
重力仪陀螺稳定平台是一类难以获得精确模型的复杂非线性时变系统。以两框架直流伺服陀螺稳定平台为被控对象,在分析平台力矩传递原理的基础上,建立基于位置、转速和电流的三环控制系统传递函数模型;并结合自抗扰技术(ADRC)的特点,把系统的内外扰动看作总扰动,采用二阶ADRC控制器取代传统的位置、转速双闭环PID控制器,设计基于自抗扰控制器的稳定平台伺服控制系统。仿真和实验结果表明:基于自抗扰控制器的稳定平台控制系统不仅稳定精度高,而且具有较好的抗干扰性能,特别是系统模型参数变化等引起的不确定性干扰,有效提高了伺服系统的鲁棒性,满足了高精度重力仪稳定平台的性能要求。 相似文献
15.
基于模块化多电平换流器的高压直流输电(MMC-HVDC)技术已得到广泛运用,但传统基于dq同步旋转坐标系的双闭环PI控制中电流内环需要依赖系统数学模型进行前馈解耦补偿,并且一阶非线性自抗扰控制器设计参数过多、整定困难。针对上述问题,提出了MMC-HVDC的二阶线性自抗扰控制策略。设计了MMCHVDC的双闭环二阶线性自抗扰控制器,实现了有功和无功功率的完全解耦控制,所设计控制器还具有响应速度快、抗扰能力强以及不依赖被控对象数学模型等优点;为了降低桥臂子模块的开关次数,改进了子模块电容电压平衡控制算法;在PSCAD/EMTDC中搭建了21电平MMC-HVDC的电磁暂态仿真模型,通过仿真验证了所设计控制器具有良好的控制性能和电容电压平衡控制算法的有效性。 相似文献
16.
矩阵变换器的电力直接变换特性使其输出侧性能极易受扰动影响,所以对矩阵变换器系统采取控制是非常必要的。由于矩阵变换器的非线性、多变量和参数时变性使其数学模型不能被确定,因此在内外部扰动不稳定的条件下,设计PI常数的单闭环控制系统并不那么成功。将一种与对象模型无关的自抗扰控制器应用于矩阵变换器系统,并且为解决自抗扰控制器控制模块的不光滑非线性函数导致矩阵变换器系统输出量谐波成分增大的问题,在自抗扰控制器的基础上,改进了自抗扰控制器模块的非线性函数并简化了其控制环。实验结果表明:当该自抗扰控制器用于矩阵变换器系统控制调节时,无论是在电网输入侧本身存在谐波污染的条件下,还是电网电压非正常工况条件下,其控制效果都优于PI控制。 相似文献
17.
针对车载双重化脉宽调制(pulse width modulation,PWM)整流器控制性能易受到模型不确定性和列车运行条件(输入电压、功率等级、电路参数等)变化影响的问题,提出一种基于自抗扰控制(active disturbance rejection control,ADRC)和模型预测直接功率控制(model predictive direct power control,MPDPC)的双闭环控制算法。其中,外环基于自抗扰控制理论,构建了基于误差驱动的ADRC(error-based ADRC,EADRC)控制器调节直流侧电压;内环结合基于内模原理的功率补偿方案使用两步MPDPC算法实现电流信号的控制。仿真和实验将所提自抗扰模型预测直接功率控制(ADRC-MPDPC)算法与传统基于比例积分的直接功率控制(proportional integral-based direct power control,PI-DPC)算法和PI-MPDPC方法进行对比,结果表明所提策略在系统启动、负载变化及工况切换等场景表现出更优的动态特性和鲁棒性能。 相似文献
18.
针对采用传统比例积分(proportional integral, PI)控制算法的感应电机在面对复杂扰动时控制性能降低的问题,基于矢量控制系统,提出了感应电机的自抗扰(active disturbance rejection control, ADRC)无模型预测控制(model-free predictive control, MFPC)方法。首先,结合转速环和磁链环数学模型,设计了转速环和磁链环的ADRC控制器,对负载变化和内参摄动产生的内外扰动进行观测并补偿。其次,为避免内环控制器对电机参数的依赖,基于无模型控制原理,建立了dq电流环的超局部方程,将控制量之外的变量视为干扰量,并引入非线性扩张状态观测器估计干扰量。最后,结合预测控制思想设计了电流环控制器,得到开关状态作用于逆变器。仿真与实验结果表明提出的算法相对PI算法有更好的抗扰性和鲁棒性,可以有效提高感应电机的动态和稳态性能。 相似文献
19.
在永磁直线同步电机(PMLSM)的运动控制系统中,提出一种位置环的改进线性自抗扰控制(ILADRC)方法。相对于传统的线性自抗扰控制(LADRC),ILADRC仅利用线性扩张状态观测器输出的位置估计信号,通过PD控制器计算初始控制量,避免了引入速度估计信号的滞后影响。对PMLSM运行过程中受到的总扰动通过线性扩张状态观测器进行实时估计,并在控制律中进行动态补偿。利用李雅普诺夫函数方法证明了闭环误差系统的渐近稳定性。通过系统辨识得到了PMLSM平台的传递函数模型,在MATLAB中进行了仿真分析,并搭建了基于dSPACE控制器的实验系统。实验结果表明,相比于PID和LADRC,ILADRC能够有效减小跟踪误差,降低超调,且具有更好的扰动抑制能力。 相似文献