首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocrystalline α-Al2O3 and Ni-modified α-Al2O3 have been prepared by sol–gel and solvothermal methods and employed as supports for Pd catalysts. Regardless of the preparation method used, NiAl2O4 spinel was formed on the Ni-modified α-Al2O3 after calcination at 1150 °C. However, an addition of NiO peaks was also observed by X-ray diffraction for the solvothermal-made Ni-modified α-Al2O3 powder. Catalytic performances of the Pd catalysts supported on these nanocrystalline α-Al2O3 and Ni-modified α-Al2O3 in selective hydrogenation of acetylene were found to be superior to those of the commercial α-Al2O3 supported one. Ethylene selectivities were improved in the order: Pd/Ni-modified α-Al2O3–sol–gel > Pd/Ni-modified α-Al2O3-solvothermal ≈ Pd/α-Al2O3–sol–gel > Pd/α-Al2O3-solvothermal  Pd/α-Al2O3-commerical. As revealed by NH3 temperature program desorption studies, incorporation of Ni atoms in α-Al2O3 resulted in a significant decrease of acid sites on the alumina supports. Moreover, XPS revealed a shift of Pd 3d binding energy for Pd catalyst supported on Ni-modified α-Al2O3–sol–gel where only NiAl2O4 was formed, suggesting that the electronic properties of Pd may be modified.  相似文献   

2.
The influence of CO2 on the deactivation of Co/γ-Al2O3 Fischer–Tropsch (FT) catalyst in CO hydrogenation has been investigated. The presence of CO2 in the feed stream reveals a negative effect on catalyst stability and in the formation of heavy hydrocarbons. The CO2 acts as a mild oxidizing agent on cobalt metal during Fischer–Tropsch synthesis. During FT synthesis on Co/γ-Al2O3 of 70 h, the CO conversion and C5+ selectivity in the presence of CO2 decreased more significantly than in the absence of CO2. CO2 is found to be responsible for the partial oxidation of surface cobalt metal at FT synthesis environment with the co-existence of generated water.  相似文献   

3.
Co-precipitation, impregnation and ultrasonic sol–gel (USG) methods have been used to prepare Cu–Cr–Fe/γ-Al2O3 catalysts, which were further used to synthesize 2-methylpiperazine. The catalysts were characterized by XRD, XPS, TG/DSC, BET, TPR, AAS and TEM. It is found that preparation method can greatly impact the catalytic performance of the catalysts, the Cu–Cr–Fe/γ-Al2O3 catalyst prepared by the ultrasonic sol–gel method proved to be the most active and stable for this reaction. The dispersion and stabilization of Cu0 in the reduced catalysts are attributed to the existence of CuCr2O4 and Fe2O3. A surprising copper migration was detected by XPS analysis for the Cu–Cr–Fe/γ-Al2O3-USG catalyst after the calcination process, which may be crucial to the high activity and stability of this catalyst.  相似文献   

4.
Ru-based catalysts supported on Ta2O5–ZrO2 and Nb2O5–ZrO2 are studied in the partial oxidation of methane at 673–873 K. Supports with different Ta2O5 or Nb2O5 content were prepared by a sol–gel method, and RuCl3 and RuNO(NO3)3 were used as precursors to prepare the catalysts (ca. 2 wt.% Ru). At 673 K high selectivity to CO2 was found. An increase of temperature up to 773 K produced an increase in the selectivity to syngas (H2/CO = 2.2–3.1), and this is related with the transformation of RuO2 to metallic Ru as was determined from XRD and XPS results. At 873 K and with co-fed CO2 an increase of the catalytic activity and CO selectivity was found. A TOF value of 5.7 s−1 and H2/CO ratio ca. 1 was achieved over Ru(Cl)/6TaZr. Catalytic results are discussed as a function of the support composition and characteristics of Ru-based phases.  相似文献   

5.
Microporous HZSM-5 zeolite and mesoporous SiO2 supported Ru–Co catalysts of various Ru adding amounts were prepared and evaluated for Fischer–Tropsch synthesis (FTS) of gasoline-range hydrocarbons (C5–C12). The tailor-made Ru–Co/SiO2/HZSM-5 catalysts possessed both micro- and mesopores, which accelerated hydrocracking/hydroisomerization of long-chain products and provided quick mass transfer channels respectively during FTS. In the same time, Ru increased Co reduction degree by hydrogen spillover, thus CO conversion of 62.8% and gasoline-range hydrocarbon selectivity of 47%, including more than 14% isoparaffins, were achieved simultaneously when Ru content was optimized at 1 wt% in Ru–Co/SiO2/HZSM-5 catalyst.  相似文献   

6.
The catalytic activity on the coprecipitated Cu–ZnO–Al2O3/Zr-ferrierite (CZA–ZrFER) with different Zr content from 0 to 5 wt.% was investigated for the direct synthesis of dimethylether (DME) from H2-deficient and biomass-derived model syngas (H2/CO molar ratio = 0.93). The catalytic functionalities, such as CO conversion and DME selectivity, showed their maxima on the bifunctional catalyst with 3 wt.% Zr-modified ferrierite. Detailed characterization studies were conducted on the catalysts to measure their properties such as surface area, acidity by temperature-programmed desorption of ammonia (NH3-TPD), reducibility of Cu oxide by temperature-programmed reduction (TPR), copper surface area measurements by N2O titration method, electronic states of copper by IR analysis and particle size measurement by XRD and TEM analysis. The number of acid sites measured by NH3-TPD on the bifunctional catalysts decreased monotonously with the increase of Zr content, meanwhile, the acidic strength is found to be minimal on the catalyst showing best performance. The reducibility of copper oxide and the surface area of metallic copper also exhibited their maximum values at the same Zr composition indicating that these are responsible for the optimum functionality of the bifunctional CZA–ZrFER catalyst. The role of easily reducible copper species with small particle size and the suppressed strong acidic sites is also emphasized in the consecutive reaction from syngas to DME on the bifunctional catalyst. The different behavior of intrinsic rate of the bifunctional catalysts is also well correlated with the metallic surface area of copper and the amount of acidic sites with their acidic strength.  相似文献   

7.
Dibenzothiophene (DBT) hydrodesulphurization (HDS) reaction at 3 MPa and 325–375 °C on Mo/γ-Al2O3 single-bed and Me/γ-Al2O3//SiO2//Mo/γ-Al2O3 (Me = Co or Ni) double-bed catalysts were investigated. Results indicate that ratio cyclohexylbenzene (CHB)/biphenyl (BP) or selectivity is higher when using double-beds rather than a single-bed. Synergy in dibenzothiophene hydrodesulphurization on Co//Mo and Ni//Mo double-beds is also detected. Changes in selectivity and conversion are attributed to the action of spillover hydrogen (Hso) formed in the first bed that reaches the second bed.  相似文献   

8.
TiO2-Al2O3 binary oxide supports were obtained by sol–gel methods from Tetra-n-butyl-titanate and pseudoboehmite/aluminium chloride resources. The typical physico-chemical properties of NiW/TiO2-Al2O3 catalysts with different TiO2 loadings and their supports were characterized by means of BET, XRD and UV–vis DRS, etc. The BET results indicated that the specific surface areas of NiW/TiO2-Al2O3 catalysts were as higher as that over pure γ-Al2O3 support, and the pore diameters were also large. The XRD and UV–vis DRS analyzing results showed that the Ti-containing supported catalysts existed as anatase TiO2 species and the incorporation of TiO2 could adjust the interaction between support and active metal, and impelled the higher reducibility of tungsten. The hydrodesulphurization (HDS) performance of the series catalysts were evaluated with diesel feedstock in a micro-reactor unit, and the HDS results showed that NiW/TiO2-Al2O3 catalysts exhibited higher activities of ultra deep hydrodesulphurization of diesel oil than that of NiW/Al2O3 catalyst. The optimal TiO2 content of NiW/TiO2-Al2O3 catalysts was about 15 m%, and the corresponding HDS efficiency could reach to 100%. The sulphur contents of diesel products over NiW/TiO2-Al2O3 (from pseudoboehmite/AlCl3) catalysts with suitable TiO2 content could be less than 15 ppmw, which met the sulphur regulation of Euro IV specification of ultra clean diesel fuel.  相似文献   

9.
Supported nickel catalysts of composition Ni/Y2O3–ZrO2 were synthesized in one step by the polymerization method and compared with a nickel catalyst prepared by wet impregnation. Stronger interactions were observed in the formed catalysts between NiO species and the oxygen vacancies of the Y2O3–ZrO2 in the catalysts made by polymerization, and these were attributed to less agglomeration of the NiO during the synthesis of the catalysts in one step. The dry reforming of ethanol was catalyzed with a maximum CO2 conversion of 61% on the 5NiYZ catalyst at 800 °C, representing a better response than for the catalyst of the same composition prepared by wet impregnation.  相似文献   

10.
A Pt/γ-Al2O3 catalyst was tested in simultaneous hydrodesulfurization (HDS) of dibenzothiophene and hydrodearomatization (HDA) of naphthalene reactions. Samples of it were subjected to different pretreatments: reduction, reduction–sulfidation, sulfidation with pure H2S and non-activation. The reduced catalyst presented the best performance, even comparable to that of Co(Ni)Mo catalysts. All catalyst samples were selective to the HDS reaction over HDA, and to the direct desulfurization pathway of dibenzothiophene HDS over the hydrogenation reaction pathway of HDS. The effect of H2S partial pressure on the functionalities of the reduced Pt/γ-Al2O3 catalyst was studied. The results showed that an increase in H2S partial pressure does not cause poisoning, but an inhibition effect, without changing the catalyst selectivity. Accordingly, the activity trends were ascribed to adsorption differences between the different reactive molecules over the same catalytic active site. TPR characterization along with a thermodynamics analysis showed that the active phase of reduced Pt/γ-Al2O3 is constituted by Pt0 particles. However, presulfidation of the catalyst leads to a mixture of PtS and Pt0 which has a negative effect on the catalytic performance without changing catalyst functionalities.  相似文献   

11.
Catalytic conversion of CO2 to liquid fuels has the benefit of reducing CO2 emission. Adsorption and activation of CO2 on the catalyst surface are key steps of the conversion. Herein, we used density functional theory (DFT) slab calculations to study CO2 adsorption and activation over the γ-Al2O3-supported 3d transition metal dimers (M2/γ-Al2O3, M = Sc–Cu). CO2 was found to adsorb on M2/γ-Al2O3 negatively charged and in a bent configuration, indicating partial activation of CO2. Our results showed that both the metal dimer and the γ-Al2O3 support contribute to the activation of the adsorbed CO2. The presence of a metal dimer enhances the interaction of CO2 with the substrate. Consequently, the adsorption energy of CO2 on M2/γ-Al2O3 is significantly higher than that on the γ-Al2O3 surface without the metal dimer. The decreasing binding strength of CO2 on M2/γ-Al2O3 as M2 changes from Sc2 to Cu2 was attributed to decreasing electron-donation by the supported metal dimers. Hydroxylation of the support surface reduces the amount of charge transferred to CO2 for the same metal dimer and weakens the CO2 chemisorption bonds. Highly dispersed metal particles maintained at a small size are expected to exhibit good activity toward CO2 adsorption and activation.  相似文献   

12.
Te-free and Te-containing Mo–V–Nb mixed oxide catalysts were diluted with several metal oxides (SiO2, γ-Al2O3, α-Al2O3, Nb2O5, or ZrO2), characterized, and tested in the oxidation of ethane and propane. Bulk and diluted Mo–V–Nb–Te catalysts exhibited high selectivity to ethylene (up to 96%) at ethane conversions <10%, whereas the corresponding Te-free catalysts exhibited lower selectivity to ethylene. The selectivity to ethylene decreased with the ethane conversion, with this effect depending strongly on the diluter and the catalyst composition. For propane oxidation, the presence of diluter exerted a negative effect on catalytic performance (decreasing the formation of acrylic acid), and α-Al2O3 can be considered only a relatively efficient diluter. The higher or lower interaction between diluter and active-phase precursors, promoting or hindering an unfavorable formation of the active and selective crystalline phase [i.e., Te2M20O57 (M = Mo, V, and Nb)], determines the catalytic performance of these materials.  相似文献   

13.
Nano-scaled χ-Al2O3 powders with d50 mean particle sizes from 17 to 314 nm were prepared to investigate the size effect on their phase transformation. Structural properties and crystallization behavior as a function of thermal treatments of various-sized χ-Al2O3 particles were examined by DTA, XRD and TEM characterizations. It was confirmed that the decrease of particle size allows for stable α-Al2O3 formation at relatively low temperature. Furthermore, the phase transformation route of χ-Al2O3 to α-Al2O3 was also modified due to the decrease of particle size. A critical size of χ-Al2O3 that determines the phase transformation behavior was found to be around 40 nm. For particles larger than 40 nm, a transition phase of κ-Al2O3 is formed before obtaining final α-Al2O3 phase. Nevertheless, for those smaller than the critical size, starting χ-Al2O3 particles have to grow to 40 nm and then directly transform to α-Al2O3 bypassing κ-Al2O3 at a temperature as low as 1050 °C.  相似文献   

14.
Commercial Cu–ZnO–Al2O3 catalysts are used widely for steam reforming of methanol. However, the reforming reactions should be modified to avoid fuel cell catalyst poisoning originated from carbon monoxide. The modification was implemented by mixing the Cu–ZnO–Al2O3 catalyst with Pt–Al2O3 catalyst. The Pt–Al2O3 and Cu–ZnO–Al2O3 catalyst mixture created a synergetic effect because the methanol decomposition and the water–gas shift reactions occurred simultaneously over nearby Pt–Al2O3 and Cu–ZnO–Al2O3 catalysts in the mixture. A methanol conversion of 96.4% was obtained and carbon monoxide was not detected from the reforming reaction when the Pt–Al2O3 and Cu–ZnO–Al2O3 catalyst mixture was used.  相似文献   

15.
The sintering kinetics of α-Al2O3 powder are reviewed in this paper. The initial sintering of α-Al2O3 micropowder and α-Al2O3 nanopowder is all controlled by grain boundary diffusion. The sintering kinetics dominate up to a relative density of 0.77, where the coarsening kinetics dominate during further densification. Herring's scaling law can be used to predict the approximate sintering temperature of α-Al2O3 powder and demonstrates that if the particle size can be reduced to <20 nm, sintering below 1000°C may be possible. ©  相似文献   

16.
Pt–Co/Al2O3 catalysts were prepared with different Co/Pt weight ratios (0.3–1.8) and their performances for preferential oxidation of CO (PROX) were tested. The activity of the catalyst increased with Co/Pt weight ratio due to the increase of the area of active phase by interaction between Pt and Co species. The 13-layered micro-channel reactor was prepared by stacking the plates coated with Pt–Co/Al2O3 catalyst. The reactor was divided into three parts (inlet, middle, and outlet) to evaluate the performance of each part. Most of O2 supplied was depleted at the inlet part and the temperature gradient of the reactor occurred due to the high exothermicity of oxidations of CO and hydrogen. In order to prevent hot spot and temperature gradient, the reactor with non-uniform distribution of the catalyst (partially coating the catalyst on the channels) was prepared. The prepared reactor showed uniform temperature distribution and exhibited excellent performance for PROX.  相似文献   

17.
The sintering behaviors and microwave dielectric properties of the 16CaO–9Li2O–12Sm2O3–63TiO2 (abbreviated CLST) ceramics with different amounts of V2O5 addition had been investigated in this paper. The sintering temperature of the CLST ceramic had been efficiently decreased by nearly 100 °C. No secondary phase was observed in the CLST ceramics and complete solid solution of the complex perovskite phase was confirmed. The CLST ceramics with small amounts of V2O5 addition could be well sintered at 1200 °C for 3 h without much degradation in the microwave dielectric properties. Especially, the 0.75 wt.% V2O5-doped ceramics sintered at 1200 °C for 3 h have optimum microwave dielectric properties of Kr = 100.4, Q × f = 5600 GHz, and TCF = 7 ppm/°C. Obviously, V2O5 could be a suitable sintering aid that improves densification and microwave dielectric properties of the CLST ceramics.  相似文献   

18.
In order to elucidate the effect of sodium on the activity of ZSM-5 supported metal oxides catalysts (ZnO–Al2O3/ZSM-5 and SnO–Al2O3/ZSM-5) for the transesterification of soybean oil with methanol, ZSM-5 supported metal oxides were prepared with and without sodium hydroxide by impregnation. The metal compositions of the ZSM-5 supported metal oxide catalysts and the metal concentrations dissolved from the catalysts to the methylester phase were measured by SEM-EDS and inductive coupled plasma spectroscopy, respectively. The catalytic activity of ZnO–Al2O3/ZSM-5 and SnO–Al2O3/ZSM-5 containing sodium did not originate from surface metal oxides sites, but from surface sodium sites or dissolved sodium leached from the catalyst surface.  相似文献   

19.
The effects of B2O3 additives on the sintering behavior, microstructure and dielectric properties of CaSiO3 ceramics have been investigated. The B2O3 addition resulted in the emergence of CaO–B2O3–SiO2 glass phase, which was advantageous to lower the synthesis temperature of CaSiO3 crystal phase, and could effectively lower the densification temperature of CaSiO3 ceramic to as low as 1100 °C. The 6 wt% B2O3-doped CaSiO3 ceramic sintered at 1100 °C possessed good dielectric properties: r = 6.84 and tan δ = 6.9 × 10−4 (1 MHz).  相似文献   

20.
Zhihui Zhu  Dehua He   《Fuel》2008,87(10-11):2229-2235
CeO2–TiO2 (Ce:Ti = 0.25–9, molar ratio) catalysts were synthesized by a sol–gel method and the catalytic performances were evaluated in the selective synthesis of isobutene and isobutane from CO hydrogenation under the reaction conditions of 673–748 K, 1–5 MPa and 720–3000 h−1. The physical properties, such as specific surface area, cumulative pore volume, average pore diameter, crystal phase and size, of the catalysts were characterized by N2 adsorption/desorption and XRD. All the CeO2–TiO2 composite oxides showed higher surface areas than pure TiO2 and CeO2. No TiO2 phase was detected on the samples of CeO2–TiO2 in which TiO2 contents were in the range of 10–50 mol%. Crystalline Ce2O3 was detected in CeO2–TiO2 (8:2). The reaction conditions, temperature, pressure and space velocity, had obvious influences on the CO conversion and distribution of the products over CeO2–TiO2 (8:2) catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号