首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
(Ba0.6Sr0.4) TiO3 thick films doped with glass slurry were fabricated by the screen-printing technique. The dielectric properties and the sintering mechanism were investigated. The films can be sintered at 600°C. The dielectric constant is 88 and the dielectric loss is 0.002 with a tunability of 23.86% under 100 kV/cm. Higher dielectric constant and tunability were obtained in the samples sintered at higher temperatures. The highest tunability is 61.12% under 150 kV/cm in the sample sintered at 800°C. The low sintering temperature and dielectric loss of the glass-doped thick films make them potential candidates for LTCC and microwave tunable devices.  相似文献   

2.
MgTiO3-doped BaZr0.35Ti0.65O3 (BZT) composite ceramics have been prepared by the conventional solid-state route. The dielectric nonlinear characteristics and relaxor behavior of these composite ceramics have been investigated. The secondary-phase BaMg6Ti6O19 is formed among BZT composite ceramics with the increase of MgTiO3. BZT composite ceramics show typical diffuse phase transition characteristic and ferroelectric relaxor behavior. The dielectric constant of BZT composite ceramics can be tailored from thousands to hundreds by manipulating the addition of MgTiO3. The dielectric loss still keeps around 0.001 and the tunability is above 20% at a dc-applied electric field of 25 kV/cm. Suitable dielectric constant, low dielectric loss, and high tunability of this kind of composite ceramics can be useful for potential microwave tunable applications.  相似文献   

3.
In this work, dopants and buffer layers were employed to simultaneously lower the dielectric loss and enhance the dielectric tunability of Ba(Zr0.3Ti0.7)O3 (BZT) thin films. The BZT, 1 mol% La doping BZT (BZTL) with and without La0.5Sr0.5CoO3 (LSCO) buffer layers were prepared by sol–gel technique. The dielectric properties of the thin films were investigated as a function of frequency and current bias field. As a result, the BZTL thin film with LSCO buffer layer showed lower dielectric loss and higher tunability simultaneously, which can be a promising candidate for tunable microwave device applications.  相似文献   

4.
The dielectric properties at microwave frequencies of Ba(Zn1/3Ta2/3)O3 ceramics prepared by sintering were investigated. These ceramics had lower density but higher loss quality than ceramics hot-pressed at 1400°C. Loss quality was greatly improved by prolonged sintering. The Q of the ceramics measured by the dielectric resonator method was 14 000 at 12 GHz. The ceramics were investigated by X-ray diffraction analysis. It was found that Q improvement corresponds with increased Zn and Ta ordered structures in the ceramics.  相似文献   

5.
In the present work, the sintering behaviors and dielectric properties of Ba0.60Sr0.40TiO3 (BST) ceramics with the addition of BaCu(B2O5) were investigated in detail. The results indicated that the addition reduced the sintering temperature of BST by about 500°C. It was suggested that a liquid phase BaCu(B2O5) assisted the densification of BST ceramics at lower temperatures. For a low-level BaCu(B2O5) addition (2.0 mol%), the BST sample sintered at 950°C for 5 h displayed good dielectric properties, with a moderate dielectric constant (ɛ=2553) and a low dielectric loss (tan δ=0.00305) at room temperature and at 10 kHz. The sample showed 45.9% tunability at 10 kHz under a dc electric field of 30 kV/cm. At the frequency of 0.984 GHz, BST-added 2.0 mol% BaCu(B2O5) possessed a dielectric constant of 2204 and a Q value of 146.7.  相似文献   

6.
High permittivity and low-loss SrTiO3/Ni0.8Zn0.2Fe2O4 (STO/NZO) composites with concrete-like morphology were prepared through hybrid processing route. The dielectric properties in the low-frequency range (100 Hz–1 MHz) follow the rule of Maxwell–Wagner interfacial polarization. The dielectric and magnetic properties in the high-frequency range (10 MHz–1 GHz) exhibit a well integration of dielectric and magnetic properties in the composites with low dielectric and magnetic losses. The STO/NZO composites show good dielectric properties and magnetic properties with low loss in high-frequency to microwave-frequency range. The results show that this kind of magnetic–dielectric composites can be used in high-frequency communications for the capacitor–inductor integrating devices such as electromagnetic interference filters and antennas.  相似文献   

7.
ZnAl2O4–TiO2 (ZAT)/polytetrafluoroethylene (PTFE) composites were prepared by powder processing method. The structure and microstructure of the composites were analyzed using X-ray diffraction and scanning electron microscopic techniques. The effect of different volume fraction of ZAT (0–0.6) on the dielectric properties of the composites was investigated at 1 MHz and at the microwave frequency of 7 GHz. The dielectric properties (relative permittivity and dielectric loss) were found to increase with the ZAT content. The samples with 60 vol.% of ZAT filler showed a relative permittivity of 3.9 and dielectric loss of 0.009, respectively, at 7 GHz. The variation of relative permittivity and dielectric loss showed only a very small variation with temperature in the range 25°–70°C for various ZAT/PTFE composites. The relative permittivity obtained experimentally were compared with that of the theoretical values predicted using modified Lichtenecker, Jayasundere—Smith, and Series mixing formulae. They were found to agree well with the predicted values for low filler content.  相似文献   

8.
Ca(Ca1/4A2/4Ti1/4)O3 (A=Nb, Ta) dielectric resonator materials have been prepared by the solid-state ceramic route. The effects of various amounts of di-, tri-, tetra-, penta-, and hexavalent impurities on the structure, microstructure, density, and microwave dielectric properties of the complex perovskites have been investigated. The structure of the parent materials remained unchanged while slight increase in density was observed with a small amount of certain dopants. An improvement in dielectric constant, quality factor, and temperature coefficient of resonant frequency was observed with the doping of small amounts of MgO, ZnO, NiO, CuO, Co3O4, Cr2O3, SnO2, and Sb2O5. A correlation between the microwave dielectric properties of Ca(Ca1/4A2/4Ti1/4)O3 (A=Nb, Ta) ceramics and ionic radius of the dopant has been observed. The reported ceramics are potential candidates for dielectric resonator applications in wireless communication devices operating in the S and C bands.  相似文献   

9.
Dielectric ceramics of Zr0.8Sn0.2TiO4 containing La2O3 and ZnO as sintering aids were prepared and investigated for microstructure and microwave dielectric properties. Low-level doping with La2O3 and ZnO (up to 0.30 wt%) is good for densification and dielectric properties. These additives do not affect the dielectric constant and the temperature coefficient. Dielectric losses increase significantly at additive levels higher than 0.15 wt%. The combined additives La2O3 and ZnO act as grain growth enhancers. With 0.15 wt% additives, a ceramic having a dielectric constant, a quality factor, and a temperature coefficient of frequency at 4.2 GHz of 37.6, 12 800, and –2.9 ppm/°C, respectively, was obtained. The quality factor was considerably improved by prolonged sintering.  相似文献   

10.
Barium strontium titanate is a promising material for microwave-phased array applications. 1,2 In this study, highly dense and fine-grained Ba0.6Sr0.4TiO3 ceramics were prepared using the spark plasma sintering (SPS) technique. The structure and dielectric tunable properties of the samples were investigated. The "distorted nano-region" emerged in the interior of the grains of SPS samples, and resulted in the deterioration of the dielectric tunable properties of Ba x Sr1− x TiO3. This phenomenon indirectly testified to the assumption of the "polar nano-region" mechanism. After the SPS samples were annealed, the "distorted nano-region" disappeared and better dielectric tunable properties were obtained. The dielectric constant was decreased to 1048, and the K value (Commutation Quality Factor) reached 7089.  相似文献   

11.
We report the microwave dielectric properties and the microstructures of Nd(Co1/2Ti1/2)O3 ceramics prepared by the conventional solid-state route. The prepared Nd(Co1/2Ti1/2)O3 exhibits a mixture of Co and Ti showing a 1:1 order in the B site. Lowering the sintering temperature (as low as 1260°C) and promoting the densification of Nd(Co1/2Ti1/2)O3 ceramics could be effectively achieved by adding CuO (up to 0.75 wt%). At 1350°C, Nd(Co1/2Ti1/2)O3 ceramics with 0.5 wt% CuO addition possess a dielectric constant (ɛr) of 27.6, a Q × f value of 165 000 GHz (at 9 GHz), and a temperature coefficient of resonant frequency (τf) of −20 ppm/°C. By comparing with pure Nd(Co1/2Ti1/2)O3 ceramics, incorporating additional CuO helps to render a dielectric material with a higher dielectric constant, a smaller τf value, and a 20% dielectric loss reduction, which makes it a very promising candidate for applications requiring low microwave dielectric loss.  相似文献   

12.
Effect of geometrical shape and induced thermal strain on the microwave dielectric properties of the layered structure ceramics of Mg0.93Ca0.07TiO3 with (Ca0.3Li0.14Sm0.42)TiO3 was investigated as a function of the number of dielectric layers. The dielectric constant and the temperature coefficient of resonant frequency (TCF) were not changed significantly with the number of dielectric layers but only depended on the net compositional ratio. However, the dielectric loss quality was affected by the number of interfaces between dielectric layers, which had a partial composition inhomogeneity due to the diffusion of Mg2+ and Ti4+ ions. The dielectric loss quality also decreased with an increase of thermal strain induced to each dielectric layer.  相似文献   

13.
High dielectric constant and low loss ceramics with composition Ba2La3Ti3TaO15 have been prepared by a conventional solid-state ceramic route. This compound adopts A5B4O15 cation-deficient hexagonal perovskite structure. The dielectric properties of dense ceramics sintered in air at 1520°C have been characterized at microwave frequencies. It shows a relative dielectric constant of ∼45, quality factor Q u× f of ∼26 828 GHz and temperature variation of resonant frequency of −0.97 ppm/°C.  相似文献   

14.
The mechanical behavior of MoSi2 reinforced–Si3N4 matrix composites was investigated as a function of MoSi2 phase content, MoSi2 phase size, and amount of MgO densification aid for the Si3N4 phase. Coarse-phase MoSi2-Si3N4 composites exhibited higher room-temperature fracture toughness than fine-phase composites, reaching values >8 MP·am1/2. Composite fracture toughness levels increased at elevated temperature. Fine-phase composites were stronger and more creep resistant than coarse phase composites. Room-temperature strengths >1000 MPa and impression creep rates of ∼10−8 s−1 at 1200°C were observed. Increased MgO levels generally were deleterious to MoSi2-Si3N4 mechanical properties. Internal stresses due to MoSi2 and Si3N4 thermal expansion coefficient mismatch appeared to contribute to fracture toughening in MoSi2-Si3N4 composites.  相似文献   

15.
0.60Ba0.6Sr0.4TiO3(BST)–(0.40− x )Mg2SiO4(MS)– x Al2O3 ( x =0, 0.5, 3, 5wt%) composite ceramics exhibit excellent characteristics suitable for tunable device applications. With increasing amount of Al, the dielectric peak can be quantitatively broadened and suppressed; the "phase transition temperature" T c or ( T m) shifts to a lower temperature. Meanwhile, the tunability is still high in a wider temperature range. Far from T c, pyroelectric effects are observed by using the Byer and Roundy technology and Slim polarization hysteresis loops are observed under high ac dielectric field at 10Hz. These proved the existence of spontaneous polarization in certain possible orientations in a broad temperature range above T c in the paraelectric medium and reveal why 0.60BST–(0.40− x )MS– x Al2O3 have such remarkable dielectric nonlinearity.  相似文献   

16.
A type of new low sintering temperature ceramic, Li2TiO3 ceramic, has been found. Although it is difficult for the Li2TiO3 compound to be sintered compactly at temperatures above 1000°C for the volatilization of Li2O, dense Li2TiO3 ceramics were obtained by conventional solid-state reaction method at the sintering temperature of 900°C with the addition of ZnO–B2O3 frit. The sintering behavior and microwave dielectric properties of Li2TiO3 ceramics with less ZnO–B2O3 frit (≤3.0 wt%) doping were investigated. The addition of ZnO–B2O3 frit can lower the sintering temperature of the Li2TiO3 ceramics, but it does not apparently degrade the microwave dielectric properties of the Li2TiO3 ceramics. Typically, the good microwave dielectric properties of ɛr=23.06, Q × f =32 275 GHz, τf = 35.79 ppm/°C were obtained for 2.5 wt% ZnO–B2O3 frit-doped Li2TiO3 ceramics sintered at 900°C for 2 h. The porosity was 0.08%. The Li2TiO3 ceramic system may be a promising candidate for low-temperature cofired ceramics applications.  相似文献   

17.
The effects of B2O3 addition on the sintering behavior and the dielectric and ferroelectric properties of Ba0.7Sr0.3TiO3 (BST) ceramics were investigated. The dielectric and ferroelectric properties of a BST sample with 0.5 wt% B2O3 sintered at <1150°C were as good as those of undoped BST sintered at 1350°C, and the dielectric loss was better. When >1.0 wt% B2O3 was added to BST, the overdoped B2O3 did not form a liquid phase or volatilize; it remained in the samples and formed a secondary phase that lowered the sintering behavior and the dielectric and ferroelectric properties of the BST.  相似文献   

18.
The effects of V2O5 addition on the sintering behavior, microstructure, and the microwave dielectric properties of 5Li2O–0.583Nb2O5–3.248TiO2 (LNT) ceramics have been investigated. With addition of low-level doping of V2O5 (≤2 wt%), the sintering temperature of the LNT ceramics could be lowered down to around 920°C due to the liquid phase effect. A secondary phase was observed at the level of 2 wt% V2O5 addition. The addition of V2O5 does not induce much degradation in the microwave dielectric properties but lowers the τf value to near zero. Typically, the excellent microwave dielectric properties of ɛr=21.5, Q × f =32 938 GHz, and τf=6.1 ppm/°C could be obtained for the 1 wt% V2O5-doped sample sintered at 920°C, which is promising for application of the multilayer microwave devices using Ag as an internal electrode.  相似文献   

19.
Our analysis of the microwave dielectric properties of the δ-Bi2O3–Nb2O5 solid solution (δ-BNss) showed a continuous increase in permittivity and dielectric losses with an increasing concentration of Nb2O5. The only discontinuity was found for the temperature coefficient of resonant frequency, which is negative throughout the entire homogeneity range but reaches a minimum value for the sample with 20 mol% Nb2O5. At the same composition there is a discontinuity in the grain size of the δ-BNss ceramics. For the sample containing 25 mol% Nb2O5 two structural modifications were observed. A single-phase tetragonal Bi3NbO7, in the literature referred to as a Type-III phase, is formed in a very narrow temperature range from 850° to 880°C. A synthesis performed below or above this temperature range resulted in the formation of the end member of the δ-BNss homogeneity range. Compared with the δ-BNss the Bi3NbO7 ceramics exhibit lower microwave dielectric losses, an increased conductivity, and a positive temperature coefficient of resonant frequency.  相似文献   

20.
The dielectric properties of ferroelectric Ba0.5Sr0.5TiO3 and non-ferroelectric MgO composites synthesized by using nano particles are investigated for tunable microwave applications. Dielectric properties are studied in the temperature range of -250°C to 100°C, with and without an electrical field. The dielectric tunability is ∼50% for BST:MgO composites under the field of 80 KV/cm. at around the Curie peak. The use of nano particle sizes of materials considerably reduces dielectric losses and shows comparatively high K-factor values in the resulted composites. The ferroelectric phase is well connected and thus enhances the overall dielectric properties of the composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号