首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cassia absus is used for medicinal purposes for a long time all over the world. In this study, the authors report the antimicrobial potential of C. absus extracts obtained with different solvents. The extract(s) obtained with ethyl acetate yielded the best antibacterial effects because of a rich supply of oxalates and alkaloids in it. The same extract was also exploited for reducing Ag+ ions (to metallic Ag0) for the synthesis of nanoparticles. Electron microscopy revealed that the silver nanoparticles were ∼18–25 nm in diameter. The Fourier‐transform infrared evaluation pointed towards the fact that flavonoids present in the plant extract were acting as reductants while amino groups were the bound stabilisation agents to the synthesised nanoparticles limiting the diameter to a certain threshold and avoiding aggregation naturally. A comparative antibacterial assay of C. absus versus Ag nanoparticles showed that the nanoparticles as well as organic (ethyl acetate) extract of the plant checked the growth of selected (MDR) superbugs. However, the biosynthesised Ag nanoparticles returned better antibacterial efficacies than ethyl acetate extract.Inspec keywords: biomimetics, nanomedicine, nanoparticles, nanofabrication, reduction (chemical), microorganisms, silver, antibacterial activity, Fourier transform infrared spectra, biomedical materials, electron microscopyOther keywords: antibacterial capacity, biomimetic synthesis, silver nanoparticles, antimicrobial potential, ethyl acetate, oxalates, alkaloids, electron microscopy, Fourier‐transform infrared evaluation, antibacterial efficacies, antibacterial assay, organic extract, Cassia absus, flavonoids, Ag  相似文献   

2.
This study demonstrates a facile approach for one-step synthesis and self-assembly of silver nanoparticles at ambient conditions. It was found that pyrogallol acid (PYA) can play multiple roles in the proposed synthesis, including a reducing agent, a stabilizer, and a linking agent for assembly. Silver ions can be readily reduced by PYA at room temperature due to its powerful reducing capability. The capability in shape and size control can be evidenced by TEM images. A third function of PYA in this case is to link the generated silver particles into chains through the action of hydrogen bonding, which leads to a new plasmon resonance emerges in the longer wavelength region centered at approximately 650 nm. These results may be useful for shape-controlled synthesis and self-assembly of other metallic nanoparticles. The self-assembly structures would be imposed more functional applications in the areas of optics, plasmonics, biomedicine labeling and ionic sensing.  相似文献   

3.
壳聚糖修饰银纳米颗粒的制备及抗菌性能研究   总被引:2,自引:0,他引:2  
采用液相化学还原法,以壳聚糖为修饰剂,硼氢化钠为还原剂,制备了壳聚糖修饰银纳米颗粒(chitosan-Ag NPs)。通过X射线粉末衍射仪、透射电子显微镜、傅立叶变换红外光谱仪等对所制备样品的结构和形貌进行了表征。结果表明,所制备纳米颗粒具有面心立方Ag的晶型结构,壳聚糖通过氨基和羟基中的N、O原子与Ag+的化学键合作用修饰在纳米颗粒表面,起到了限制颗粒粒径长大和防止其团聚的作用。采用肉汤连续稀释法检测了样品对大肠杆菌和金黄色葡萄球菌的抑菌杀菌性能,结果表明chitosan-Ag NPs具有优异的抗菌性,抗菌性能受到粒径大小的影响。  相似文献   

4.
The current time increase in the prevalence of antibiotic resistant ‘super‐bugs’ and the risks associated with food safety have become global issues. Therefore, further research is warranted to identify new and effective antimicrobial substances. Silver nanoparticles (Ag‐NPs) were synthesized by autoclaving technique using, different concentrations of Ag salt (AgNO3) solution (1, 5, 10, and 25 mM). Their presence was confirmed by a surface plasmon resonance band at ∼435 nm using UV–Vis absorption spectra. The morphology of the synthesized Ag‐NPs stabilized by polyacrylamide (PAM) was examined by TEM, SAED, and EDS. TEM images revealed that the synthesized Ag‐NPs had an average diameter of 2.98±0.08 nm and SAED and EDS results confirmed the formation of Ag‐NPs. In addition, FT‐IR spectroscopy revealed that a PAM polymer matrix stabilized the Ag‐NPs. The well diffusion method, was used to test, Gram positive and Gram negative bacteria were examined. Also the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were studied against Ag‐NPs. The Ag‐NPs exhibited strong inhibitory activity, MIC and MBC against the tested clinical bacterial isolates. These results suggest that Ag‐NPs stabilized in PAM are highly effective against clinical bacterial isolates can be applied in medical fields.Inspec keywords: antibacterial activity, silver, nanoparticles, nanomedicine, surface plasmon resonance, X‐ray chemical analysis, transmission electron microscopy, electron diffraction, Fourier transform infrared spectroscopy, microorganisms, ultraviolet spectra, visible spectraOther keywords: Ag‐NP facile synthesis, PAM‐reduction approach, antibacterial application, antibiotic resistant super‐bugs, food safety, antimicrobial agents, antibiotics, antimicrobial substances, Ag salt solution concentration, ultraviolet‐visible absorption spectra, polyacrylamide, transmission electron microscopy, electron diffraction, energy dispersive X‐ray spectroscopy, TEM images, Fourier transform infrared spectroscopy, PAM polymer matrix, diffusion method, Gram positive bacteria, Gram negative bacteria, clinical bacterial isolates, Ag  相似文献   

5.
We report a novel shell technique to prepare controllable core-shell nanoparticles. In this technique, the shell is formed when the core reacts with metal ions and Na(2)S(2)O(3) and the size of the core and thickness of the shell can be controlled. Transmission electron microscopy and X-ray diffraction reveal that the shell consists of insoluble complex salts comprising Au(2)S, AuAgS, and Ag(3)AuS(2). The resulting core-shell nanoparticles obtained at different reaction stages demonstrate that the formation of Au(2)S, AuAgS, and Ag(3)AuS(2) shell proceeds from the outside. The morphological evolution of the particles changes significantly with reaction time demonstrating that formation of the shell results from diffusion in the solid shell. The core-shell nanoparticles produced by this technique can be used as nanosensors to detect Ag(+) in aqueous media with high selectivity and sensitivity. The excellent selectivity for Ag(+) is demonstrated by comparing the response to other metal ions. In addition, our evaluation indicates that gold nanorods offer higher sensitivity than gold nanospheres.  相似文献   

6.
Si-Si/Si-O dehydrocoupling of hydrosilanes with alcohols (1:1.5 mole ratio), catalyzed by AgNO3 which converted to Ag(0) colloidal nanoparticles, gave poly(alkoxysilane)s in one-pot in moderate to high yield. The hydrosilanes include p-X-C6H4SiH3 (X = H, CH3, OCH3, F), PhCH2SiH3, and (PhSiH2)2. The alcohols include MeOH, EtOH, (i)PrOH, PhOH, and CF3(CF2)2CH2OH. The weight average molecular weight and polydispersity of the poly(alkoxysilane)s were in the range of 1,600 approximately 8,000 Dalton and 1.4 approximately 3.5. The dehydrocoupling reactions of phenylsilane with ethanol (1:3 mole ratio) in the presence of the silver nanocolloid catalyst produced only triethoxyphenylsilane as product.  相似文献   

7.
Silver ions can be reduced by 24 kHz ultrasonic waves in ion-exchanged Ag+–Y zeolite. In this research, silver ions were introduced into the nano-porous (1.2 nm) zeolite lattice by ion-exchange route. After the reduction process, silver nanoparticles were placed in the cavities, with a size of about 1 nm and also on the external surfaces of the zeolite, with sizes about less than 10 nm. Fast and simple lab-scale reduction of silver ions in the zeolite is important for researchers who work on catalytic properties of metallic silver–zeolite. Several reduction methods have been reported but reduction by ultrasonic waves is a new, simple, and size-controllable method with a high practical value which does not need any complicated facilities. In a sonochemical process, a huge density of energy is provided by the collapse of bubbles which formed by ultrasonic waves. The released energy causes the formation of reducing radicals that consequently reduce the silver ions. It is concluded that the higher silver content may result in the formation of larger silver crystals on the external surface of zeolite crystals. Also, the addition of 1-propanol and 2-propanol to the aqueous reaction medium does not cause better reduction. In addition, increasing the irradiation time and ultrasonic power does not affect the silver crystal growth significantly but the extent of silver ion reduction increases when the power of ultrasonic waves increases. All samples were irradiated under the same ultrasonic conditions. The samples were analyzed by XRD, EDS, SEM, and TEM.  相似文献   

8.
Nanofiber webs of chitosan (CS)/poly(vinyl alcohol) (PVA) blends incorporated with silver nanoparticles (AgNs) were fabricated by two different methods: a refluxing method and an annealing method. We found that the characterization and antibacterial activity of AgNs depended on not only the fabrication methods but also the weight ratio of CS and PVA in the CS/PVA blend. The change in the size and number of AgNs due to the interaction between AgNs and CS, in turn, affected the antibacterial property of the non-woven webs. Non-woven webs of CS/PVA nanofibers containing AgNs that were fabricated by the refluxing method showed higher antibacterial ability against Escherichia coli than did the other types of non-woven webs. The morphology of the electrospun non-woven webs was observed by field emission scanning electron microscopy. The characterization of AgN formation on the surface of electrospun fibers was examined by transmission electron microscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy.  相似文献   

9.
10.
Here we communicate our experimental results on the synthesis of silver nanoparticles in solution and thin films using silver nitrate and poly vinyl alcohol (PVA) mixture at different concentrations and different laser irradiations. Detailed studies were carried out by varying pulse width, wavelength, exposure time, and energy of the laser. Formation of nanoparticles was confirmed through color change from transparent to yellow. Irradiated solutions and thin films at different concentrations showed plasmon peak in the absorption spectra. Formation of different sized nanoparticles at different energies with peak shift is observed. Transmission electron microscope (TEM) results confirmed the formation of nanoparticles with size of the particles varying from 2 to 200 nm. Formation of silver nanoparticles with hexagonal and different shapes were observed in particular with 355 nm laser irradiation. Influence of wavelength, pulse width, exposure time, and energy in the synthesis of silver nanoparticles is highlighted. Electron diffraction patten of a single nanoparticle in TEM showed polycrystallinity with cubic nature for the silver nanoparticles prepared. We also compared the linear and nonlinear absorption properties of the freshly prepared nanoparticles with nanoparticles solution left in a shelf for a long period of time.  相似文献   

11.
In the present study, we report enhanced antimicrobial properties of 29 and 23 nm silver nanoparticles (Ag NPs) obtained by electrochemical synthesis in poly(amide-hydroxyurethane) media. Antibacterial activity assessed by disk diffusion method indicates that silver nanoparticles produced inhibition zones for both Escherichia coli and Staphylococcus aureus depending on silver concentration. The bacterial growth curve performed in the presence of silver nanoparticles showed a stronger antibacterial effect at lower concentrations than those described in the earlier reports. The effect was both dose and size dependent and was more pronounced against Gram negative bacteria than Gram positive one. The smallest Ag NPs used had a bactericidal effect resulting in killing E. coli cells. Scanning electron microscopy analysis indicated major damage and morphology changes of the silver nanoparticles treated bacterial cells. The major mechanism responsible for the antibacterial effect probably consists in clusters formation and nanoparticles anchorage to the bacterial cell surface.  相似文献   

12.
Nano-Micro Letters - Extract of oven dried leaves of Pongamia pinnata (L) Pierre was used for the synthesis of silver nanoparticles. Stable and crystalline silver nanoparticles were formed by the...  相似文献   

13.
Hong S  Lee JS  Ryu J  Lee SH  Lee DY  Kim DP  Park CB  Lee H 《Nanotechnology》2011,22(49):494020
A strategy for the on-surface synthesis of silver nanoparticles (AgNPs) on a variety of two-?to three-dimensional material surfaces, utilizing polydopamine, an emerging surface modifying agent, is reported in this paper. This material-independent platform for AgNP synthesis is useful for fabricating organic/inorganic hybrid nanomaterials and for preparing substrates for laser desorption-ionization time-of-flight mass spectrometry (LDI-ToF MS).  相似文献   

14.
Guang-Wu Yang 《Materials Letters》2008,62(14):2189-2191
Highly monodispersed Ag nanoparticles (NPs) were prepared by a sonochemical method, in which Ag+ in an ethanol solution of AgNO3 was reduced by ultrasound irradiation in the presence of benzyl mercaptan without the additional step of introducing other reducing reagents or protective reagents. In addition to the stabilizing effect, benzyl mercaptan remarkably enhanced the reduction rate, probably due to the thermal decomposition that occurs at the interfacial region between cavitation bubbles and bulk solution and provides reducing radicals. More importantly, the size of Ag NPs can be controlled by simply tuning the initial molar ratio of benzyl mercaptan to Ag, which was confirmed by transmission electron microscopy and ultraviolet-visible absorption spectrometry, as well as X-ray diffraction.  相似文献   

15.
A synthetic route is presented for the preparation of a silver film in presence of UV-radiation. Methoxy polyethylene glycol, a water-soluble polymer, was used as the reducing agent of the silver ions in the presence of an ultraviolet source to produce silver nanoparticles. During solution stirring, a centrifugal force was generated at the center of the solution. At this point on the surface of the solution, the nanoparticles coalesced to form a self-assembly of small subunits that ultimately develops into a film-like network.  相似文献   

16.
Silver nanoparticles have been synthesized by reduction of silver nitrate in the presence of humic acids (HA) which acted as capping agents. The HA protected nanoparticles were found to be sensitive to increasing concentrations of sulfurazon-ethyl herbicide in solution which induced a variation in color of the nanoparticles solution from yellow to purple. The effect of the humic acid concentration used in the nanoparticles synthesis was studied by varying the [Ag+:HA] ratio content from [1:1] to [1:100]. UV–Vis spectroscopy was used to monitor the extinction spectra of silver nanoparticles after the synthesis and in the herbicide sensing experiments. An average silver nanoparticles size of 5 nm was confirmed by transmission electron microscope (TEM). When exposed to increasing concentration of sulfurazon-ethyl (0, 100, 200, 300, 400, 500 ppm), the solution of nanoparticles was found to changes from yellow color to orange red and purple with increasing herbicide concentration.  相似文献   

17.
We have studied the effect of nanosecond-pulsed KrF excimer laser radiation on a composite metamaterial based on a soda-lime-silicate glass containing ion-synthesized silver nanoparticles, depending on the number of pulses. It is established that, as the number of laser pulses increases, the average size of silver nanoparticles in the ion-implanted layer monotonically decreases. In addition, the laser annealing is accompanied by the diffusion of silver inward the glass and by the partial evaporation of silver from the sample surface. The observed decrease in the size of silver nanoparticles is considered with allowance for the simultaneous melting of both the metal particles and glass matrix.  相似文献   

18.
The role of pH in the green synthesis of silver nanoparticles (AgNPs) is investigated. For the reduction synthesis of AgNPs we use silver nitrate, glucose, sodium hydroxide and starch respectively to serve as precursor, reducing agent, accelerator and stabilizer. The effect of NaOH addition on the nature of AgNPs is systematically studied. Two reaction pathways are proposed to explain the formation of AgNPs, keeping in view the pH changes that occur on addition of different amounts of NaOH. The aqueous sol of AgNPs prepared at different pH values display different surface plasmon resonance (SPR) behavior. This is explained in terms of size and size distribution of AgNPs.  相似文献   

19.
The formation of silver nanoparticles by chemical reduction of Ag+-loaded Nafion-117 membrane with NaBH4 was studied using radioactivity tagged ions. The counterion-exchange method (Ag(m)+ <--> Na(s)+) was used to obtain a membrane sample with a varying proportion of Ag+ ions. The X-ray elemental mapping across the thickness of the membrane by energy-dispersive X-ray spectrometer attached to the environmental scanning electron microscope (ESEM/EDAX) indicated that Na+ and Ag+ were uniformly distributed in the membrane samples before reduction. The average size of nanoparticles formed after reduction was found to be 15 +/- 3 nm, irrespective of the concentration of silver ions present in the membrane before reduction. Energy-dispersive X-ray fluorescence (EDXRF) analyses of the membrane samples, carried out before and after reduction, indicated that the Ag concentration on the membrane surface was considerably increased after reduction. EDXRF measurements of the membrane samples, obtained from reduction carried out in a dead end cell, indicated that Ag nanoparticles were formed only on the membrane surface exposed to NaBH4 solution. Reduction carried out with NaBH4 tagged with 22Na showed that the formation of Ag nanoparticles involved exchange of Ag+ ions from ion-exchange sites in the interior of the membrane with Na+ ions, followed by reduction of Ag+ ions with BH4- ions at the surface of membrane. The study of self-diffusion of water, Na+, and Cs+ ions in the membrane loaded with Ag nanoparticles indicated that formation of Ag nanoparticles did not affect the diffusional transport properties of the membrane. The ion-exchange capacity and water uptake capacity were also not affected by the formation of Ag nanoparticles in the membrane. The spatial distribution of Ag nanoparticles across the thickness of the membrane obtained by ESEM/EDAX showed that Ag nanoparticles were confined to a few-micrometer surface layer of the membrane. Based on these observations, an attempt has been made to explain the mechanism of the formation of Ag nanoparticles in the membrane.  相似文献   

20.
Silver nanoparticles of small size with a high surface to volume ratio have been prepared using an organometallic approach. For this, the complex NBu(4)[Ag(C(6)F(5))(2)] has been treated with AgClO(4) in a 1:1 molar ratio, giving rise to the nanoparticle precursor [Ag(C(6)F(5))] in solution. Addition of one equivalent of hexadecylamine (HDA) and 5?h of reflux in toluene leads to a deep yellow solution containing monodisperse silver nanoparticles (Ag NPs) of ca.?10?nm. This approach leads to nanoparticles with almost uncontaminated surfaces which make them very reactive. Antimicrobial studies show that these nanoparticles are very active as antimicrobial agents. Very low concentrations between 12 and 25?μg?ml(-1) of Ag NPs are enough to produce bacteriostatic and bactericidal effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号