首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CNT paste consists of organic solution, inorganic binder and filler. Organic solution contains organic resins and solvent including surfactants which finely disperse CNTs. Filler affects surface morphology, electron emission property, viscosity, and rheological characteristics of CNT paste. We used different fillers such as silver and alumina in CNT paste for special function. The emission properties of CNT paste with silver are similar to those of CNT paste with alumina if filler portion is the same. From the scanning electron microscope (SEM) different morphologies of CNTs was observed depending on the type of filler. CNT paste which showed good emission property had vertically well-aligned CNTs on the surface after surface treatment using adhesive tape. We measured viscosity and rheological properties with rheometer RS600 from HAAKE. Emission property of CNT paste was evaluated in vacuum chamber of 10− 6 Torr with pulse generator and duty was 1/500.  相似文献   

2.
A horizontally-aligned carbon nanotube (HACNT) field emission cathode was coated with a metallic glass thin film (MGTF) to improve the stability of the field emission properties. HACNT field emission cathodes have previously been fabricated on glass substrates using composite plating and crack-formation techniques. A carbon nanotubes/nickel (CNTs/Ni) composite film is deposited onto a glass substrate at 80 °C by the composite plating technique alone. Cracks are then formed in the CNT/Ni composite film during 30 min heating at 300 °C, and HACNTs are exposed in the cracks. The field emission properties of the HACNT field emission cathode show a low turn-on electric field Eon of about 2.3 V/μm, a low threshold electric field Eth of about 4.7 V/μm at an emission current density of 1 mA/cm2, and a stability time of 78 h. The degradation of the HACNT field emission cathode is prevented by using a MGTF-coating technique and superior long-term stability (i.e. >125 h, with 5 nm MGTF; >270 h, with 10 nm MGTF) for the MGTF/HACNT field emission cathode is achieved.  相似文献   

3.
The fabrication and field emission characteristics are reported for point-type carbon nanotube (CNT) emitters formed by transferring a CNT film onto a Ni-coated Cu wire with a diameter of 1.24 mm. A Ni layer plays a role in enhancing the adhesion of CNTs to the substrate and improving their field emission characteristics. On firing at 400 °C, CNTs appear to directly bonded to a Ni layer. With a Ni layer introduced, a turn-on electric field of CNT emitters decreases from 1.73 to 0.81 V/μm by firing. The CNT film on the Ni-coated wire produces a high emission current density of 667 mA/cm2 at quite a low electric field of 2.87 V/μm. This CNT film shows no degradation of emission current over 40 h for a current density of 60 mA/cm2 at electric field of 6.7 V/μm. X-ray imaging of a printed circuit board with fine features is demonstrated by using our point-type CNT emitters.  相似文献   

4.
A conducting layer using carbon nanotube (CNT) paste was prepared by mixing multi-walled CNT (MWNT), organic vehicles and spin on glass (SOG). The effect of SOG on the properties of the CNT paste was evaluated and compared to that of CNT paste with a glass frit. CNT powders were coated on the conducting CNT film either by sprinkling CNT powders onto the overall conducting layer area or by dropping a solution containing well dispersed CNTs. CNTs were strongly fixed by the formation of silica after heat treatment. The samples showed good field emission characteristics with turn-on electric fields of approximately 1.6 ∼ 2.2 V/μm. SOG was found to be an efficient inorganic binder for CNTs in the CNT paste.  相似文献   

5.
Huiyao Wang  John J. Moore 《Carbon》2012,50(3):1235-1242
Using radio frequency-plasma enhanced chemical vapor deposition (RF-PECVD), carbon nanofibers (CNFs) and carbon nanotubes (CNTs) were synthesized at low temperature. Base growth vertical turbostratic CNFs were grown using a sputtered 8 nm Ni thin film catalyst on Si substrates at 140 °C. Tip growth vertical platelet nanofibers were grown using a Ni nanocatalyst in 8 nm Ni films on TiN/Si at 180 °C. Using a Ni catalyst on glass substrate at 180 °C a transformation of the structure from CNFs to CNTs was observed. By adding hydrogen, tip growth vertical multi-walled carbon nanotubes were produced at 180 °C using FeNi nanocatalyst in 8 nm FeNi films on glass substrates. Compared to the most widely used thermal CVD method, in which the synthesis temperature was 400–850 °C, RF-PECVD had a huge advantage in low temperature growth and control of other deposition parameters. Despite significant progress in CNT synthesis by PECVD, the low temperature growth mechanisms are not clearly understood. Here, low temperature growth mechanisms of CNFs and CNTs in RF-PECVD are discussed based on plasma physics and chemistry, catalyst, substrate characteristics, temperature, and type of gas.  相似文献   

6.
Plasma-enhanced chemical vapor deposition (CVD) has the advantages of low temperature and vertical growth in synthesizing carbon nanotubes (CNTs), but has generally produced stubby CNTs, probably due to an ion bombardment effect. To suppress the ion bombardment, a metal mesh with the same electrical potential as that of the cathode was placed just above the substrate on the cathode. The anode was electrically grounded while the cathode and the mesh were both negatively biased, causing no plasma to occur below the mesh. The substrate was therefore separated from the plasma by the mesh so that the ion bombardment was suppressed. CNTs were grown on a 2 nm-thick Invar catalyst with different DC plasma powers of 0–112 W at 500 °C, 3.3 torr for 10 min, using C2H2 (28 sccm) and NH3 (172 sccm). Compared to CNTs grown with no mesh, these CNTs showed smaller diameters and greater lengths. As the plasma power decreased, the CNTs grown with mesh were thinner and longer and resembled those grown at a higher temperature by thermal CVD. Etching these CNTs by N2 plasma reduced their population density and considerably improved their field emission characteristics.  相似文献   

7.
Patterned carbon nanotube (CNT) arrays on Si substrate have been fabricated by using a two layer Sn/Ni catalyst in a diffusion ethanol flame. Vertically well-aligned CNT arrays were achieved on a Si substrate without any catalyst pretreatment. The Sn underlayer activated the substrates for CNT growth with Ni as catalyst, and provided a good contact between CNTs and the substrate, which is useful for field emission. Since the adhesion of Sn/Ni nanoparticles to the substrate is very strong, the growth of the CNTs follows a base-growth mode. The thickness of the Sn underlayer largely determines the diameter and diameter distribution of the as-grown CNTs. The morphologies and field electron emission properties of CNT arrays grown on Si substrates with different thicknesses of Sn and growth times have been investigated. The variation of emission current density was less than 5% during a 4 h test under a field of 1.77 V/µm.  相似文献   

8.
9.
Stable carbon nanotube (CNT) field emitters for a vacuum-sealed miniature X-ray tube have been fabricated. The field emitters with a uniform CNT coating are prepared by a simple drop drying of a CNT mixture solution that is composed of chemically modified multi-walled CNTs, silver nanoparticles, and isopropyl alcohol on flat tungsten tips. A highly thermal- and electrical-conductive silver layer strongly attaches CNTs to the tungsten tips. Consequently, the field emitters exhibit good electron emission stability: continuous electron emission of around 100 μA at 2.3 V/μm has stably lasted over 40 h even at non-high vacuum ambient (~10−3 Pa).  相似文献   

10.
Characteristics of the growth of multi-walled carbon nanotubes (CNTs) at a localized surface of a needle-shaped graphite cathode by corona discharge were investigated with varied temperature, 400–1000 °C. For the CNTs' growth, C2H4 in H2 stream was used as carbon source. The CNTs were observed in aligned form on the tip of a needle-shaped cathode under the present condition. It was observed that the temperature range for the CNTs' growth with corona discharge, 600–800 °C, was lower than that that without corona discharge, 700–1000 °C. In the relevant reaction system, strong electric field at the cathode tip enforced the CNTs to grow straightly to form the free-standing aligned CNT forest at a specifically narrow tip zone of the needle cathode.  相似文献   

11.
Carbon nanotubes (CNTs) have been employed to enhance the photoactivity of titanium dioxide (TiO2). In this work, CNTs were deposited by chemical vapor deposition (CVD) onto the surface of anodized Co-TiO2 nanotubes. The influence of CVD parameters (time and temperature) on the Co-TiO2/CNT structure and properties was investigated. We studied three synthesis times (10, 20, and 30 min) and two synthesis temperatures (700 and 800°C). The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and X-ray diffraction (XRD). The photocurrent performance of the electrodes was determined by linear voltammetry. The results showed the successful formation of Co-TiO2/CNT hybrid structures. The shortest synthesis time produced higher quality CNTs. The samples synthesized at 700 and 800°C for 10 min exhibited a current density of 1.13 mA.cm−2 and 7.84 mA.cm−2, respectively, which is 9 and 65 times greater than the Co-TiO2 sample. The synergistic effect of the CNT deposition and the crystalline phase composition significantly improved the photoresponse of TiO2. The proper choice of synthesis parameters allowed the control of the sample structure, leading to the production of electrodes with better light-harvesting performance.  相似文献   

12.
The different inorganic binders and organic vehicles were used to synthesize carbon nanotube (CNT) paste for field emission display. The morphologies, thermal and emission properties of the CNT paste with different components were investigated. The uniformity, the adhesion, and emission properties of CNT paste was improved when an inorganic binder changed from a glass frit to spin on glass (SOG). The current density increases by 5 times in magnitude when the ethyl cellulose solution was used instead of to acryl solution. The fabricated CNT emitter using photosensitive CNT paste showed high brightness of 18,000 cd/m2 at low operating voltage of 1200 V.  相似文献   

13.
The application of an inkjet printing process for fabricating solid oxide fuel cell (SOFC) cathodes was investigated. Stably-dispersed LSCF–GDC inks were prepared by ball milling, and the composition was easily controlled by the preparation process. Fabrication of an LSCF–GDC layer was successfully carried out by depositing dots and the thickness was easily controlled by repeating printing process. A planar SOFC single cell with a double-layered cathode (comprised of a paste painted cathode layer and an inkjet printed interlayer) achieved a maximum power density of 0.71 W/cm2 at 600 °C. This is the preliminary work for fabricating the cathode layer of a SOFC single cell via inkjet printing.  相似文献   

14.
A novel composite plating method has been developed for the fabrication of carbon nanotube/Ni (CNT/Ni) field emission cathode. The field emission properties of the initial CNT/Ni field emitter show a low turn-on electric field Eon of about 1.1 V/μm with an emission current density of 1 μA/cm2, and a low threshold electric field Eth of about 1.7 V/μm with an emission current density of 1 mA/cm2. After performing a stability test with a high emission current density in high vacuum, the corresponding microstructure and the degree of graphitization of the CNT/Ni field emitter were measured by using scanning electron microscopy and Raman spectroscopy. We found that the degree of graphitization slowly decreases with the duration time tFE of the stability test, the size of small rod-like CNT/Ni composite structures in the film increases with tFE, and obvious cracks appear in the film as tFE is larger than 60 h. The degradation of the field emission properties may be explained by the Joule heating effect on the CNT/Ni field emitter under high emission current density.  相似文献   

15.
For the future commercial applications of carbon nanotubes (CNTs) in high power vacuum microwave amplifiers or compact X-ray tubes, we have attempted to fabricate engrafted CNT field emitters on a metallic substrate using both screen printing and chemical vapor deposition. Cobalt nano-grains are doped in the printed CNT paste and act as the catalyst for the engrafted growth of CNTs by the cold wall chemical vapor deposition. Stable cathode current (~ 30 mA) from a small area (~ 1.5 mm2) of engrafted CNT emitters was measured in a vacuum-sealed diode tube. High current density (> 1.6A/cm2) has also gotten in the vacuum sealed tube in which the emitters spread about 0.78 mm2 after an aging process that lasts more than 12 h in DC mode with the water cooling of the anode.  相似文献   

16.
A comparison of different catalyst systems (Fe–Mo, Co–Mo or Ni–Mo nanoparticles supported on calcium carbonate) has been performed in order to optimize the carbon nanotube (CNT) growth. The influences of the reaction temperature, metal loading and carbon source on the synthesis of CNTs were investigated. Dense CNT networks have been synthesized by thermal chemical vapor deposition (CVD) of acetylene at 720 °C using the Co–Mo/CaCO3 catalyst. The dependence of the CNT growth on the most important parameters was discussed exemplarily on the Co catalyst system. Based on the experimental observations, a phenomenological growth model for CVD synthesis of CNTs was proposed. The synergy effect of Mo and active metals was also discussed.  相似文献   

17.
The growth of bamboo-like multi-walled carbon nanotubes (CNTs) without the formation of amorphous carbons was performed using copper-based catalysts by catalytic chemical vapour deposition (CVD) with diluted ethylene at 700–900 °C. The as-grown CNT soot was characterised by transmission electron microscopy, thermogravimetric analysis and Raman spectroscopy. The weak metal–support interaction of a sulphate-assisted copper catalyst (CuSO4/SiO2) can provide high-purity growth with remarkable yields of CNTs (2.24–6.10 CNT/g Cu·h) at 850–900 °C. Additionally, hydrogen-assisted CVD can activate inert copper catalysts, e.g., Cu(NO3)2/SiO2 or Cu(CH3COO)2/SiO2, for the growth of CNTs.  相似文献   

18.
This article provides a method for growing carbon nanotubes(CNTs) on carbon fibers(CFs) using iron and nickel as catalysts at low temperatures. This series of experiments was conducted in a vacuum chemical vapor deposition(CVD)furnace. It is found that Fe–Ni catalysts, which have a certain thickness and can be better combined with resins when manufacturing composite materials, are more ideal for the growth of CNTs than single metal catalysts. At the same time, it is proved that the CVD process worked best at 450 °C. The mechanical property test proved the reinforcing effect of CNTs on carbon fiber, the single-filament tensile strength of CFs obtained by using Fe–Ni catalyst at 450 °C was 11% higher than that of Desized CFs. The bonding strength of carbon fiber and resin has also been significantly improved. When synthesized at low temperature, CNTs exhibited a hollow multi-wall structure.  相似文献   

19.
For field emission application, carbon nanotube emitters were synthesized on catalyst-mixed thick-film electrode lower than 500 °C by chemical vapor deposition (CVD) method. Mixtures of Ni/tetraethyl silicate (TEOS) and conducting Ag powders were applied to fabricate the electrode by screen-printing processes. These processes are simple, low cost and easy to scale up for large sized panels. The field emission properties performed uniform emission image and high brightness (no less than 500 nits). The turn-on electric field was about 3.85 V/μm with an emission current destiny of 10 μA/cm2, and the achieved current density was 1 mA/cm2 driven by 5 V/μm.  相似文献   

20.
Randomly oriented short and low density conical carbon nanotubes (CNTs) were prepared on Si substrates by tubular microwave plasma enhanced chemical vapor deposition process at relatively low temperature (350–550 °C) by judiciously controlling the microwave power and growth time in C2H2 + NH3 gas composition and Fe catalyst. Both length as well as density of the CNTs increased with increasing microwave power. CNTs consisted of regular conical compartments stacked in such a way that their outer diameter remained constant. Majority of the nanotubes had a sharp conical tip (5–20 nm) while its other side was either open or had a cone/pear-shaped catalyst particle. The CNTs were highly crystalline and had many open edges on the outer surface, particularly near the joints of the two compartments. These films showed excellent field emission characteristics. The best emission was observed for a medium density film with the lowest turn-on and threshold fields of 1.0 and 2.10 V/μm, respectively. It is suggested that not only CNT tip but open edges on the body also act as active emission sites in the randomly oriented geometry of such periodic structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号