共查询到20条相似文献,搜索用时 15 毫秒
1.
Virén T Saarakkala S Tiitu V Puhakka J Kiviranta I Jurvelin J Töyräs J 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2011,58(1):148-155
A local cartilage injury can trigger development of posttraumatic osteoarthritis (OA). Surgical methods have been developed for repairing cartilage injuries. Objective and sensitive methods are needed for planning an optimal surgery as well as for monitoring the surgical outcome. In this laboratory study, the feasibility of an arthroscopic ultrasound technique for diagnosing cartilage injuries was investigated. In bovine knees (n = 7) articular cartilage in the central patella and femoral sulcus was mechanically degraded with a steel brush modified for use under arthroscopic control. Subsequently, mechanically degraded and intact adjacent tissue was imaged with a high frequency (40 MHz) intravascular ultrasound device operated under arthroscopic guidance. After opening the knee joint, mechanical indentation measurements were also conducted with an arthroscopic device at each predefined anatomical site. Finally, cylindrical osteochondral samples were extracted from the measurement sites and prepared for histological analysis. Quantitative parameters, i.e., reflection coefficient (R), integrated reflection coefficient (IRC), apparent integrated backscattering (AIB), and ultrasound roughness index (URI) were calculated from the ultrasound signals. The reproducibilities (sCV %) of the measurements of ultrasound parameters were variable (3.7% to 26.1%). Reflection and roughness parameters were significantly different between mechanically degraded and adjacent intact tissue (p < 0.05). Surface fibrillation of mechanically degraded tissue could be visualized in ultrasound images. Furthermore, R and IRC correlated significantly with the indentation stiffness. The present results are encouraging; however, further technical development of the arthroscopic ultrasound technique is needed for evaluation of the integrity of human articular cartilage in vivo. 相似文献
2.
Antonio Boccaccio Maria Cristina Frassanito Luciano Lamberti Roberto Brunelli Giuseppe Maulucci Maurizio Monaci Massimiliano Papi Carmine Pappalettere Tiziana Parasassi Lakamy Sylla Fulvio Ursini Marco De Spirito 《Journal of the Royal Society Interface》2012,9(76):2871-2882
The zona pellucida (ZP) is an extracellular membrane surrounding mammalian oocytes. The so-called zona hardening plays a key role in fertilization process, as it blocks polyspermy, which may also be caused by an increase in the mechanical stiffness of the ZP membrane. However, structural reorganization mechanisms leading to ZP''s biomechanical hardening are not fully understood yet. Furthermore, a correct estimate of the elastic properties of the ZP is still lacking. Therefore, the aim of the present study was to investigate the biomechanical behaviour of ZP membranes extracted from mature and fertilized bovine oocytes to better understand the mechanisms involved in the structural reorganization of the ZP that may lead to the biomechanical hardening of the ZP. For that purpose, a hybrid procedure is developed by combining atomic force microscopy nanoindentation measurements, nonlinear finite element analysis and nonlinear optimization. The proposed approach allows us to determine the biomechanical properties of the ZP more realistically than the classical analysis based on Hertz''s contact theory, as it accounts for the nonlinearity of finite indentation process, hyperelastic behaviour and material heterogeneity. Experimental results show the presence of significant biomechanical hardening induced by the fertilization process. By comparing various hyperelastic constitutive models, it is found that the Arruda–Boyce eight-chain model best describes the biomechanical response of the ZP. Fertilization leads to an increase in the degree of heterogeneity of membrane elastic properties. The Young modulus changes sharply within a superficial layer whose thickness is related to the characteristic distance between cross-links in the ZP filamentous network. These findings support the hypothesis that biomechanical hardening of bovine ZP is caused by an increase in the number of inter-filaments cross-links whose density should be higher in the ZP inner side. 相似文献
3.
可注射海藻酸钙水凝胶的制备研究 总被引:1,自引:0,他引:1
海藻酸钙水凝胶因其良好的生物相容性广泛应用于组织工程支架材料的研究。以海藻酸钠(SA),碳酸钙,葡萄糖酸内酯(GDL)为原料,通过原位相转变制备可注射凝胶,用于软骨组织微创修复材料的研究。测定了单一变量条件下不同海藻酸钠浓度、f值(钙离子与羧基的摩尔比)及n值(葡萄糖酸内酯与钙离子的摩尔比)对海藻酸凝胶力学强度、溶胀率、浸提液pH值等的影响,从而获得各组分最适的配比;另外,通过原位接种软骨细胞,研究了软骨细胞在凝胶中的生长行为。综合海藻酸钙凝胶性能,最终确定海藻酸钠浓度为2.5%、f=0.5及n=0.6为最佳配比;细胞培养结果表明软骨细胞在凝胶中具有较高的活性且维持了其软骨细胞形态,证实了研究制得的海藻酸钙水凝胶是一种优良的可注射软骨组织工程支架材料。 相似文献
4.
Oliveira JT Crawford A Mundy JM Moreira AR Gomes ME Hatton PV Reis RL 《Journal of materials science. Materials in medicine》2007,18(2):295-302
In the present work we originally tested the suitability of corn starch-polycaprolactone (SPCL) scaffolds for pursuing a cartilage
tissue engineering approach. Bovine articular chondrocytes were seeded on SPCL scaffolds under dynamic conditions using spinner
flasks (total of 4 scaffolds per spinner flask using cell suspensions of 0.5 × 106 cells/ml) and cultured under orbital agitation for a total of 6 weeks. Poly(glycolic acid) (PGA) non-woven scaffolds and
bovine native articular cartilage were used as standard controls for the conducted experiments. PGA is a kind of standard
in tissue engineering approaches and it was used as a control in that sense. The tissue engineered constructs were characterized
at different time periods by scanning electron microscopy (SEM), hematoxylin-eosin (H&E) and toluidine blue stainings, immunolocalisation
of collagen types I and II, and dimethylmethylene blue (DMB) assay for glycosaminoglycans (GAG) quantification assay. SEM
results for SPCL constructs showed that the chondrocytes presented normal morphological features, with extensive cells presence
at the surface of the support structures, and penetrating the scaffolds pores. These observations were further corroborated
by H&E staining. Toluidine blue and immunohistochemistry exhibited extracellular matrix deposition throughout the 3D structure.
Glycosaminoglycans, and collagen types I and II were detected. However, stronger staining for collagen type II was observed
when compared to collagen type I. The PGA constructs presented similar features to SPCL at the end of the 6 weeks. PGA constructs
exhibited higher amounts of matrix glycosaminoglycans when compared to the SPCL scaffolds. However, we also observed a lack
of tissue in the central area of the PGA scaffolds. Reasons for these occurrences may include inefficient cells penetration,
necrosis due to high cell densities, or necrosis related with acidic by-products degradation. Such situation was not detected
in the SPCL scaffolds, indicating the much better biocompatibility of the starch based scaffolds. 相似文献
5.
Fourier transform infrared imaging (FT-IRI) and principal component regression (PCR) were used to quantitatively determine collagen and proteoglycan concentrations in bovine nasal cartilage (BNC). An infrared spectral library was first established by obtaining eleven infrared spectra from a series of collagen and chondroitin 6-sulfate mixed in different ratios. FT-IR images were obtained from 6-μm-thick sections of BNC specimens at 6.25-μm pixel size. The spectra from the FT-IR images were imported into a PCR program to obtain the relative concentrations of collagen and proteoglycan in BNC, based on the spectral library of pure chemicals. These PCR-determined concentrations agreed with the molecular concentrations determined biochemically using an enzyme digestion assay. Use of the imaging approach revealed that proteoglycan loss in the specimens occurs first at the surface of the tissue block when compared with the middle portion of the tissue block. The quantitative correlation of collagen and proteoglycan revealed that their infrared absorption peak areas at 1338 and 1072-855 cm(-1) can only be used as qualitative indicators of the molecular contents. The use of PCR with FT-IRI offers an accurate tool to spatially determine the distributions of macromolecular concentration in cartilage. 相似文献
6.
Ana B. Castro-Ceseña M. Pilar Sánchez-Saavedra Ekaterina E. Novitskaya Po-Yu Chen Gustavo A. Hirata Joanna McKittrick 《Materials science & engineering. C, Materials for biological applications》2013,33(8):4958-4964
The present study proposes an interpretation of the mechanism of bone deproteinization. Cortical and trabecular bovine femur bones were deproteinized using 6% NaOCl (37, 50, 60 °C). The kinetic parameters (rate constant and activation energy) were calculated, and the surface area of each type of bone was considered. A statistical analysis of the rate constants shows that cortical bone deproteinizes at a lower rate than trabecular. The activation energy is higher for trabecular than cortical bone, and no significant differences are found in the protein concentration values for both bones. Therefore, although trabecular bone deproteinizes at a higher rate than cortical, trabecular bone requires more energy for the deproteinization reaction to take place. Considering that both types of bones are constituted by mineral, protein, and water; the present work shows that the individual inner matrix architecture of trabecular and cortical bones, along with characteristics such as the mineral concentration and its bonding with collagen fibers, may be the responsible factors that control protein depletion. 相似文献
7.
Buehler PW Boykins RA Jia Y Norris S Freedberg DI Alayash AI 《Analytical chemistry》2005,77(11):3466-3478
Glutaraldehyde-polymerized bovine hemoglobin (PolyHbBv, trade name Oxyglobin), is a non-site-specific modified hemoglobin-based oxygen-carrying solution, developed for use in veterinary medicine. PolyHbBv was fractionated into four distinct tetrameric and multiple polytetrameric forms ranging in molecular mass (87.2-502.3 kDa) using size exclusion chromatography (SEC) and verified by laser light scattering. We evaluated the structural modification occurring in the fractionated mixture of PolyHbBv and assessed the functionality and redox stability of each fraction in relation to the mixture as a whole. Intramolecular cross-linking evaluation as performed by MALDI-MS and SEC under dissociating conditions revealed no-site-specific tetramer stabilization within the fractions; Intermolecular cross-linking was highly correlated with lysine and histidine modification as determined by amino acid composition analysis. While native unmodified hemoglobin, HbBv, PolyHbBv, and PolyHbBv fractions (F1-F4) revealed significant methionine oxidation, modification, or both, the critical betaMet55 located in the functionally plastic domains (alpha1-beta1 interface) of HbBv was unaltered. Moreover, neither of the two betaCys93 located in the highly plastic alpha1-beta2 interface were modified in PolyHbBv or in F1-F4. Our structural analysis also revealed that the reported loss in sensitivity to chloride in PolyHbBv could not be attributed to direct alteration of chloride ion binding amino acids. Structural modification imparted by glutaraldehyde resulted in nearly identical functional characteristics of PolyHbBv and its fractions with regard to oxygen equilibrium, ligand binding, and autoxidative kinetics. 相似文献
8.
Shahin Bonakdar Shahriar Hojjati Emami Mohammad Ali Shokrgozar Afshin Farhadi Seyed Amir Hoshiar Ahmadi Amir Amanzadeh 《Materials science & engineering. C, Materials for biological applications》2010,30(4):636-643
Polyurethane was prepared from hexamethylene diisocyanate (HMDI) and polycaprolactone diol (PCL) with stoichiometry ratio of two in a reactor to form prepolymer. Polyvinyl alcohol (PVA) at PVA/prepolymer ratios of 8, 4, 2 and 1 was crosslinked with the former degradable polyester polyurethane. Fourier transform infrared (FTIR) was employed to confirm polyurethane formation during the course of reactions. FTIR spectrum revealed bands at 1729–1733 cm? 1 and 3347–3340 cm? 1 which indicates carbonyl and NH of amine groups, respectively. Polyurethane formation was also confirmed by the absence of the isocyanate peaks (NCO) at 2270 cm? 1. Dynamic mechanical thermal analysis (DMTA) showed that by increasing prepolymer concentration glass transition temperature decreases from 26 °C for PVA to 19 °C for sample with PVA/prepolymer ratio of 4 and then it rises up to 31 °C. Water uptake measurements illustrated about four fold reduction in swelling ratio of PVA after crosslinking and the sample with equal amounts of PVA and PPU had water uptake of 100%, close to that of a natural cartilage and much less than PVA (425%). All samples had compressive modulus in the range of the articular cartilage (1.9–14.4 MPa). The morphology of the isolated cells on the samples was evaluated by scanning electron microscopy (SEM) and revealed cell attachment and proliferation. The cell viability (3-4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT) and GAG expression (dimethylmethylene blue, DMMB) assays with human chondrocytes on the sample with PVA/prepolymer ratio of one showed about 14 and 33% increase in cell viability and GAG expression after 14 days of culture compare to the PVA, respectively. 相似文献
9.
Zhang H Huang RY Jalili PR Irungu JW Nicol GR Ray KB Rohrs HW Gross ML 《Analytical chemistry》2010,82(24):10095-10101
Although bottom-up proteomics using tryptic digests is widely used to locate post-translational modifications (PTM) in proteins, there are cases where the protein has several potential modification sites within a tryptic fragment and MS(2) strategies fail to pinpoint the location. We report here a method using two proteolytic enzymes, trypsin and pepsin, in combination followed by tandem mass spectrometric analysis to provide fragments that allow one to locate the modification sites. We used this strategy to find a glycosylation site on bovine trypsin expressed in maize (TrypZean). Several glycans are present, and all are attached to a nonconsensus N-glycosylation site on the protein. 相似文献
10.
Maria Helena Santos Rafael M. Silva Vitor C. Dumont Juliana S. Neves Herman S. Mansur Luiz Guilherme D. Heneine 《Materials science & engineering. C, Materials for biological applications》2013,33(2):790-800
Bovine pericardium is widely used as a raw material in bioengineering as a source of collagen, a fundamental structural molecule. The physical, chemical, and biocompatibility characteristics of these natural fibers enable their broad use in several areas of the health sciences. For these applications, it is important to obtain collagen of the highest possible purity. The lack of a method to produce these pure biocompatible materials using simple and economically feasible techniques presents a major challenge to their production on an industrial scale. This study aimed to extract, purify, and characterize the type I collagen protein originating from bovine pericardium, considered to be an abundant tissue resource. The pericardium tissue was collected from male animals at slaughter age. Pieces of bovine pericardium were enzymatically digested, followed by a novel protocol developed for protein purification using ion-exchange chromatography. The material was extensively characterized by electrophoresis, scanning electron microscopy, energy dispersive X-ray spectroscopy, and infrared spectroscopy. The results showed a purified material with morphological properties and chemical functionalities compatible with type I collagen and similar to a highly purified commercial collagen. Thus, an innovative and relatively simple processing method was developed to extract and purify type I collagen from bovine tissue with potential applications as a biomaterial for regenerative tissue engineering. 相似文献
11.
牛肌腱胶原纤维提取条件优化及其结构表征 总被引:1,自引:0,他引:1
以牛肌腱为原料,通过酸-酶结合法提取胶原纤维,比较不同时间、pH值、酶用量下的胶原纤维提取率以及可溶性胶原含量,从而得到提取胶原纤维最优工艺,并用SDS-PAGE电泳、DSC、IR、SEM、AFM对胶原纤维进行了结构表征.研究结果表明,在4℃下,酸-酶结合法水解的最佳条件为,时间40h、pH值为2.5、酶用量1.0%.该条件下所得胶原纤维提取率较高,红外特征峰明显,分子量大且分布窄,变性温度为66.7℃;SEM显示胶原纤维呈现孔隙均匀的三维网状结构,孔径约为100~300μm;AFM观察到胶原纤维以单根原纤维、纤维束等形式存在,明暗相间的横纹间距为60.35nm.综合认为制备得到了具有天然三股螺旋结构的胶原纤维. 相似文献
12.
In this study, a novel route for the preparation of magnetite (Fe(3)O(4)) nanoparticles (NPs) with immobilized metal affinity ligand iminodiacetic acid (IDA) charged with Cu(2+) was developed. First, magnetite nanoparticles were synthesized by a hydrothermal method. Charged with Cu(2+), the magnetic nanoparticles (MNPs) were applied to separate a model protein mixture of bovine hemoglobin (BHb) and bovine serum albumin (BSA). They could be separated completely and showed low non-specific adsorption. The morphology, structure and composition of the magnetite MNPs were characterized by transmission electron microscopy, power x-ray diffraction, x-ray photoelectron spectrometry and Fourier transform infrared spectroscopy. The resulting magnetite MNPs charged with Cu(2+) show not only a strong magnetic response to externally applied magnetic field, but are also highly specific to protein BHb. It is interesting that MNPs modified with metal ligands showed a property of magnetic colloid photonic crystals. Furthermore, they could efficiently remove the abundant protein bovine hemoglobin from bovine blood. They have potential application in removing abundant protein in proteomic analysis. 相似文献
13.
Sha Huang Yijuan Wang Tang Liang Fang Jin Shouxin Liu Yan Jin 《Materials science & engineering. C, Materials for biological applications》2009,29(4):1351-1356
Microparticles can serve as substrates for cell amplification and deliver the expanded cells to the site of the defect. It was hypothesized that a novel microparticle combined of sustained and localized delivery of proliferative growth factors and gyrus-patterned surface would influence the cell behaviours of adherence and expansion on the microparticle in the present study. To test the hypothesis, gelatin particles with diameter ranging from 280 to 350 µm were fabricated and were modified by cryogenic freeze-drying treatment and basic fibroblast growth factor (bFGF) incorporation. The results of in vitro chondrocyte culture illustrated that cells could proliferate more obviously on the microparticles with bFGF addition, but no correlation between attachment rate and bFGF was observed. On the other hand, microparticles with gyrus-patterned surface demonstrated the highest cell attachment rate and higher rate of cell growth, in particular on bFGF combined ones. It seems to be a promising candidate as a chondrocyte microparticle and could be the potential application in cartilage tissue engineering. 相似文献
14.
William J. Znidarsic I.-Wei Chen V. Prasad Shastri 《Journal of Materials Science》2009,44(5):1374-1380
In this study, bovine serum albumin (BSA) and collagen (COLL) were adsorbed independent of one another, onto the surface of
silica nanoparticles (SNPs) at pH’s where the ζ-potential of the proteins were equal in magnitude, but opposite to the SNP
surface to ascertain the differences in surface coverage and conformation in the adsorbed layer. In both systems, increasing
the concentration of free protein resulted in an increase in protein surface coverage and ζ values, with ζ values approaching that of native protein at high surface coverage. However, a lower critical charge reversal concentration
range was measured for COLL relative to BSA (COLL: 0–25 μg/mL, BSA: 25–90 μg/mL). Additionally, a considerable difference
in ζ for adsorbed protein versus free protein was observed. These results when interpreted in terms of the theory of Ottewill
and Watanabe indicate a higher Gibbs energy of association for COLL versus BSA on SNP surfaces, accompanied by perturbation
in protein structure. 相似文献
15.
Adolfo Sebastián Maiolo Matías Nicolás Amado Jimena Soledad Gonzalez Vera Alejandra Alvarez 《Materials science & engineering. C, Materials for biological applications》2012,32(6):1490-1495
Hydroxyapatite (HA) reinforced Poly(vinyl alcohol) (PVA) hydrogel composites has been proposed as a promising biomaterial to replace diseased or damaged articular cartilage. Here, PVA/in-situ produced HA hydrogels with 0, 3 and 7.5 wt.% of HA content were obtained by freezing/thawing technique. Thermal, structural and mechanical characterizations were carried out. SEM micrographs revealed that HA was homogeneously distributed in PVA until 3 wt.% whereas partial agglomeration was observed for higher contents (7.5 wt.%). No significant changes were observed in the glass transition temperature (the average value was near to 78 °C ± 3 °C), the melting point and structural water content whereas the gel fraction slightly increased (from 0.72 to 0.78) with the increase the content of HA. The absorbed water decreased (from 85.7% to 80.5%) as a function of HA content The stress–strain curves were really different in hydrated and non-hydrated conditions, changing from non-linear, in presence of water, to linear behavior in a dried state, being in the first case consistent with the articular cartilage . The lowest friction coefficient was obtained for samples with 3 wt. % HA (0.067 ± 0.049), which is, together with a high resistance (721 ± 25 kPa), an important property for materials that will be used as articular replacement. The results indicate that this hydrogel could be used, after other studies, as articular cartilage replacement. 相似文献
16.
Analysis of friction between articular cartilage and polyvinyl alcohol hydrogel artificial cartilage
Many biomaterials are being used to repair damaged articular cartilage. In particular, poly vinyl alcohol hydrogel has similar mechanical properties to natural cartilage under compressive and shearing loading. Here, three-factor and two-level friction experiments and long-term tests were conducted to better evaluate its tribological properties. The friction coefficient between articular cartilage and the poly vinyl alcohol hydrogel depended primarily on the three factors of load, speed, and lubrication. When the speed increased from 10 to 20 mm/s under a load of 10 N, the friction coefficient increased from 0.12 to 0.147. When the lubricant was changed from Ringer’s solution to a hyaluronic acid solution, the friction coefficient decreased to 0.084 with loads as high as 22 N. The poly vinyl alcohol hydrogel was severely damaged and lost its top surface layers, which were transferred to the articular cartilage surface. Wear was observed in the surface morphologies, which indicated the occurrence of surface adhesion of bovine cartilage. Surface fatigue and adhesive wear was the dominant wear mechanism. 相似文献
17.
在不同浓度丝氨酸(Ser),天冬氨酸(Asp)和谷氨酸(Glu)的组合下制备氨基酸/羟基磷灰石(AA/HAP)复合材料。通过红外光谱仪、X射线衍射仪和透射电镜对复合材料进行表征,评估复合材料对酸蚀牛牙釉质体外再矿化的效果。结果表明:氨基酸(AA)会干扰羟基磷灰石(HAP)晶面的生长,使HAP的溶解度增加和晶体结构有序性降低。X射线衍射图及透射电镜图的结果显示,AA对HAP的[100]晶向具有显著的抑制作用,且与不含AA的HAP相比,AA修饰的HAP复合材料具有细化的晶粒尺寸。通过CCK-8法评估了材料的细胞毒性,结果表明AA/HAP复合材料的相对细胞活性优于HAP。场发射扫描电镜图表明不含AA的HAP材料和两组不同浓度AA改性HAP材料均可修复酸蚀牛牙釉质的表面龋损。而在Ser,Asp和Glu均为10 mmol·L-1条件下制备的AA/HAP可在牛牙釉质的深层再矿化中生成厚度约为22μm的致密再矿化层,并获得了最佳的表面显微硬度恢复效果。 相似文献
18.
Biswajit Bera 《Sadhana》2009,34(5):823-831
The present study describes the development of artificial articular cartilage on the basis of mimicking structural gel properties
and mechanical gel properties of natural articular cartilage. It is synthesized from PVA/Si nanocomposite containing 20% Tetra
ethoxy silane (TEOS) by sol-gel method. Mechanical strength of Poly(vinyl alcohol), PVA is improved up to 35 MPa. Manufacturing
method is adopted considering colloidal stability of nano silica particle in PVA sol at specific pH = 1. An adhesive is also
prepared from PVA/Si nanocomposite containing 40% TEOS for firm attachment of artificial articular cartilage on underlying
bone with high bond strength. 相似文献
19.
O. Franke M. Göken M.A. Meyers K. Durst A.M. Hodge 《Materials science & engineering. C, Materials for biological applications》2011,31(4):789-795
Articular cartilage is a poroelastic (biphasic) material with a complex deformation behavior, which can be considered elastic–viscoelastic. In this article, articular porcine cartilage is tested in vitro using dynamic nanoindentation and is analyzed using the frequency domain. The testing and data analysis are presented as a function of the strain rate and frequency, which allows for the results to be compared for various load amplitudes over the same frequency range. In addition, a new approach to correct the contact area during dynamic nanoindentation is presented and the effects of sample freezing on the mechanical properties are also discussed. 相似文献
20.
Nowadays there is an increasing number of recombinant enzymes made available to industry. Before replacing the use of natural enzymes with their cognate recombinant counterparts, one important issue to address is their actual equivalence. For a given recombinant proteolytic enzyme, its equivalence can be investigated by comparing its cleavage specificity with that obtained from the natural enzyme. This is mostly done by analyzing the fragments (i.e., peptidic map) attained after enzymatic digestion of a given protein used as substrate. The peptidic maps obtained are typically characterized using separation techniques together with MS and MS/MS systems. However, these procedures are known to be difficult and labor-intensive. In this work, the combined use of a theoretical model that relates electrophoretic behavior of peptides to their sequence together with capillary electrophoresis-mass spectrometry (CE-MS) is proposed to characterize in a very fast and simple way the cleavage specificity of new recombinant enzymes. Namely, the effectiveness of this procedure is demonstrated by analyzing in few minutes the fragments obtained from a protein hydrolysated using recombinant and natural pepsin A. The usefulness of this strategy is further corroborated by CE-MS/MS. The proposed procedure is applicable in many other proteomic studies involving CE-MS of peptides. 相似文献