首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of thermal annealing and Si incorporation on the structure and properties of diamond-like carbon (DLC) films were investigated. As-deposited DLC film (DLC) and Si incorporated DLC film (Si-DLC), both with and without thermal annealing, were analyzed for bonding structure, residual stress, film thickness, elastic modulus and fracture properties using Raman spectroscopy, wafer curvature, nanoindentation, four-point bend fracture testing, and X-ray photoelectron spectroscopy (XPS). Raman spectroscopy clearly showed that thermal annealing of DLC films promotes more sp2 bonding character, whereas Si incorporation into the films promotes more sp3 bonding character. Interfacial fracture energies, film hardness and elastic modulus, and residual film stress were all found to vary strongly with the degree of sp3 bonding in the DLC film. These changes in mechanical properties are rationalized in terms of the degree of three dimensional inter-links within the atomic bond network.  相似文献   

2.
Guangze Tang  Mingren Sun 《Carbon》2005,43(2):345-350
Fluorocarbon films were deposited on silicon substrate by R.F. magnetron sputtering using a polytetrafluoroethylene (PTFE) target. Structure of the deposited films was studied by X-ray photoelectron spectroscopy (XPS). Hardness, elastic modulus and scratch resistance were measured using a nanoindenter with scratch capability. -CFx (x = 1, 2, 3) and C-C units were found in the deposited fluorocarbon films. The hardness and elastic modulus of the films are strongly dependent on the R.F. power and deposition pressure. The film hardness is in the range from 0.8 GPa to 1.3 GPa while the film elastic modulus is in the range from 8 GPa to 18 GPa. Harder films exhibit higher scratch resistance. Differences in nanoindentation behavior between the deposited fluorocarbon films, diamond-like carbon (DLC) films and PTFE were discussed. The fluorocarbon films should find more applications in the magnetic storage and micro/nanoelectromechanical systems.  相似文献   

3.
The relationship between metal-induced (W, Mo, Nb and Ti) structures and the surface properties of Me–DLC thin films is discussed. Nanocomposite films were deposited on c–Si wafers by pulsed-DC reactive magnetron sputtering controlling the gas ratio CH4/Ar. The sputtering process of metals such as Ti, Nb and Mo (unlike the tungsten) in the presence of methane shows a low reactivity at low methane concentration. The deposition rate and the spatial distribution of sputtered material depend of Z-ratio of each metal. The surface contamination of metal targets by carbon, owing to methane dilution, limits the incorporation of metals into DLC films according to an exponential decay. Results of electron probe microanalysis and X-ray photoelectron spectroscopy indicate a C rich Me/C composition ratio for low relative methane flows. According to the depth profile by secondary ion mass spectrometry, the films are systematically homogeneous in depth, whereas at high carbon contents they exhibit a metal-rich interfacial layer on the substrate. Moreover, high resolution transmission electron microscopy has evidenced important structural modifications with respect to DLC standard films, with marked differences for each Me/C combination, providing nanodendritic, nanocrystallized or multilayered structures. These particular nanostructures favour the stress decrease and induce significant changes in the tribological characteristics of the films. This study shows the possibilities of controlling the amorphous carbon films structure and surface properties by introducing metal in the DLC matrix.  相似文献   

4.
The carbon nanotubes (CNTs) doped diamond like carbon films were carried out by spinning coating multi-walled carbon nanotubes (CNTs) on silicon covered with diamond like carbon films via PECVD with C2H2 and H2. The results show that the ID/IG and sp2/sp3 ratios are proportional to the CNT contents. For wettability and hydrogen content, the increase of CNT content results in more hydrophobic and less hydrogen for CNT doped DLC films. As for mechanical properties, the hardness and elastic modulus increases linearly with increasing CNT content. The residual stress is reduced for increasing CNT content. As for the surface property, the friction coefficient is reduced for higher CNT content. For CNT doped DLC films, the inclusion of horizontal CNT into DLC films increases the hardness, elastic modulus and reduces the hydrogen content, friction coefficient and residual stress. Like the light element and metal doping, the CNT doping has effects on the surface and mechanical properties on DLC which might be useful to specific application.  相似文献   

5.
《Diamond and Related Materials》2000,9(9-10):1608-1611
Diamond-like carbon (DLC) films and nitrogen-doped DLC (N-DLC) films were deposited on a molybdenum-coated ceramic substrate using the pulsed laser deposition technique. The structure and surface morphology of the films were examined using X-ray diffraction, Raman spectroscopy, Auger electron spectroscopy and scanning electron microscopy. Field emission measurements were carried out, with the DLC or the N-DLC films as the cathode and ITO-coated glass as the anode. The field emission measurements indicated that the nitrogen doping could lower the turn-on field and increase the current density. It was believed that the interface at the molybdenum–N-DLC film plays an important role in improving the field emission performance of the N-DLC film.  相似文献   

6.
A novel technique involving the incorporation of two molybdenum (Mo) screen grids embedded in an electron cyclotron resonance chemical vapor deposition (ECR–CVD) system is presented in this paper. A comprehensive set of film deposition experiments based on this screen grid sputtering technique has been carried out. The Mo-containing carbon films were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS). The film resistivity, optical bandgap and hardness were evaluated as a function of the gas flow ratio (CH4/Ar). XPS analysis showed that the fraction of Mo incorporated in the carbon film decreased drastically from 15.11 to 0.32% following an increase in the CH4/Ar flow ratio. The optical absorption also decreases strongly and the film with the lowest Mo fraction has a bandgap of 2.0 eV. The film resistivity was found to increase by 11 orders of magnitude following the decrease in the metal fraction. It is found that Mo can exist in the forms of MoC, Mo2C, Mo, and even MoO3 in the films, the last being mainly due to air exposure. The results showed that our ECR-based screen grid technique for Me-C:H deposition is highly effective and flexible with good control over the amount of metal incorporated.  相似文献   

7.
A kind of rare earth oxide, CeO2, was doped into the diamond-like carbon (DLC) films with thickness of 180–200 nm, using unbalanced magnetron sputtering. All the adhesion strength of CeO2 doped DLC films is increased, while the residual compressive stress is obviously decreased compared to pure DLC film. Specially, the residual compressive stress of the deposited films are reduced by 90%, when the CeO2 content is in the range of 5–7%, from a value of about 4.1 GPa to 0.5 GPa. When the CeO2 content is increased to 10%, the deposited films possess the highest adhesion strength of 85 mN, 37% higher than that of pure DLC film. The nanohardness and elastic modulus exist a transition point at 8% of CeO2 content within the DLC film. Before this value, nanohardness and elastic modulus of CeO2 doped DLC films are lower than those of pure DLC film, and after this value, they are higher or adjacent to those of pure DLC film. Auger electron spectroscopy shows a more widened interface of 6% CeO2 doped DLC film compared to pure DLC film. The enhancement of adhesion strength is mainly attributed to the widening of the film-substrate interface, as well as the decrease of residual compressive stress.  相似文献   

8.
Cr-incorporated diamond-like carbon (Cr-DLC) films were deposited on AZ31 magnesium alloy as protective coatings by a hybrid beams deposition system, which consists of a DC magnetron sputtering of Cr target (99.99%) and a linear ion source (LIS) supplied with CH4 precursor gas. The Cr concentration (from 2.34 to 31.5 at.%) in the films was controlled by varying the flow ratio of Ar/CH4. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to investigate the microstructure and composition of Cr-DLC films systematically. An electrochemical system and a ball-on-disk tribotester were applied to test the corrosion and tribological properties of the film on the AZ31 substrate, respectively. At low Cr doping (2.34 at.%), the film mainly exhibited the feature of amorphous carbon, while at high doping (31.5 at.%), chromium carbide crystalline phase occurred in the amorphous carbon matrix of the film. In this study, all the prepared Cr-DLC films showed higher adhesion to AZ31 than the DLC film. Especially for the film with low Cr doping (2.34 at.%), it owned the lowest internal stress and the highest adhesion to substrate among all the films. Furthermore, this film could also improve the wear resistance of magnesium alloy effectively. But, none of the films could improve the corrosion resistance of the magnesium alloy in 3.5 wt.% NaCl solution due to the existence of through-thickness defects in the films.  相似文献   

9.
In this paper, diamond like carbon (DLC) films were coated on polyethylene terephthalate (PET) film substrate as a function of biasing voltage using plasma enhanced chemical vapour deposition. The surface morphology of the DLC films was analyzed by scanning electron microscopy and atomic force microscopy. The chemical state and structure of the films were analyzed by X-ray photoelectrons spectroscopy and Raman spectroscopy. The micro hardness of the DLC films was also studied. The surface energy of interfacial tension between the DLC and blood protein was investigated using contact angle measurements. In addition, the blood compatibility of the films was examined by in vitro tests. For a higher fraction of sp3 content, maximum hardness and surface smoothness of the DLC films were obtained at an optimized biasing potential of ? 300 V. The in vitro results showed that the blood compatibility of the DLC coated PET film surfaces got enhanced significantly.  相似文献   

10.
A superhard hydrogen-free amorphous diamond-like carbon (DLC) film was deposited by pulsed arc discharge using a carbon source accelerator in a vacuum of 2×10−4 Pa. The growth rate was about 15 nm/min and the optimum ion-plasma energy was about 70 eV. The impact of doping elements (Cu, Zr, Ti, Al, F(Cl), N) on the characteristics of DLC films deposited on metal and silicon substrates was studied aiming at the choice of the optimum coating for low friction couples. The microhardness of thick (≥20 μm) DLC films was studied by Knoop and Vickers indentations, medium thick DLC films (1–3 μm) were investigated using a ‘Fischerscope’, and Young's module of thin films (20–70 nm) was studied by laser induced surface acoustic waves. The bonds in DLC films were investigated by electron energy loss spectroscopy (EELS), X-ray excited Auger electron spectroscopy (XAES), and X-ray photoelectron spectroscopy (XPS). The adhesion of DLC films was defined by the scratch test and Rockwell indentation. The coefficient of friction of the Patinor DLC film was measured by a rubbing cylinders test and by a pin-on-disk test in laboratory air at about 20% humidity and room temperature. The microhardness of the Patinor DLC film was up to 100 GPa and the density of the film was 3.43–3.65 g/cm3. The specific wear rate of the Patinor DLC film is comparable to that of other carbon films.  相似文献   

11.
《Ceramics International》2023,49(2):2427-2439
This work reveals the influence of discharge current on carbon-ion energies of plasma, elastic modulus, and friction coefficient at the nano- and macroscale of carbon films deposited via high-power impulse magnetron sputtering. Three applied discharge current conditions in deposition processes were employed to obtain three-carbon films of interest. The number of carbon ions with their energies was obtained via mimic tests of the deposition process using three similar discharge currents through a quadrupole mass spectrometer detector based on the time-averaged ion energy distribution function. The bonding structure of the films was evaluated using Raman spectroscopy, fitting the Diamond and Graphite peaks to obtain a semiquantitative analysis. The elastic modulus of the carbon films was determined from atomic force acoustic microscopy measurements avoiding the influence of the substrates. The friction coefficient was analyzed at the nanoscale via atomic force microscopy and at the macroscale via tribometry. Significant alterations were observed in the number and energy level of the carbon ions with the variation of discharge current. These alterations significantly influenced the bonding properties, elastic modulus, and tribology behavior. A higher elastic modulus and higher sp3 bond content were observed for the film with a lower number of carbon ions and less energy.  相似文献   

12.
In the present study diamond like carbon films containing copper (DLC:Cu) were deposited by reactive magnetron sputtering. Direct current (DC) sputtering and high power pulsed magnetron sputtering (HIPIMS) were used. The influence of the composition and structure on piezoresistive properties of DLC:Cu films was investigated. Structure of DLC:Cu films was investigated by Raman scattering spectroscopy and transmission electron microscopy (TEM). Chemical composition of the films was studied by using energy-dispersive X-ray spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS). Particularly analysis of XPS O1s spectra revealed oxidation of Cu nanoparticles. Piezoresistive gauge factor of DLC:Cu films was in 3–6 range and decreased with the increase of copper atomic concentration. Tendency of the decrease of the gauge factor of DLC:Cu films with the increased D/G peak area ratio (decreased sp3/sp2 carbon bond ratio) was observed. It was found that resistance (R) of DLC:Cu films decreased with the increase of Cu atomic concentration by logarithmic law. It is shown that a quasilinear increase of piezoresistive gauge factor with log(R) is in good accordance with percolation theory. Temperature coefficient of resistance (TCR) of DLC:Cu films was negative and decreased with copper amount in Cu atomic concentrations ranging up to ~ 40%. Very low TCR values (zero TCR) were observed only for DLC:Cu films with low gauge factor that was close to the gauge factor of the metallic strain gauges. Role of some possible mechanisms: copper amount as well as Cu cluster size on the value of gauge factor is discussed.  相似文献   

13.
Diamond-like carbon (DLC) films were deposited on silicon wafers by thermal electron excited chemical vapor deposition (CVD). To change the hydrogen content in film, we used three types of carbon source gas (C7H8, CH4, and a CH4+H2) and two substrate bias voltages. The hydrogen content in DLC films was analyzed using elastic recoil detection analysis (ERDA). Tribological tests were conducted using a ball-on-plate reciprocating friction tester. The friction surface morphology of DLC films and mating balls was observed using optical microscopy and laser Raman spectroscopy.Hydrogen content in DLC films ranged from 25 to 45 at.%. In a water environment, the friction coefficient and specific wear rate of DLC films were 0.07 and in the range of 10−8–10−9 mm3/Nm, respectively. The friction coefficient and specific wear rate of DLC film in water were hardly affected by hydrogen content. The specific wear rate of DLC film with higher hardness was lower than that of film with low hardness. Mating ball wear was negligible and the friction surface features on the mating ball differed clearly between water and air environments, i.e., the friction surface on mating balls in water was covered with more transferred material than that in air.  相似文献   

14.
Amorphous carbon film, also known as DLC film, is a promising material for tribological application. It is noted that properties relevant to tribological application change significantly depending on the method of preparation of these films. These properties are also altered by the compositions of these films. DLC films are well known for their self-lubricating properties, as well. In view of this, the objective of the present work is to compare the tribological properties of diamond like carbon (DLC) film obtained by plasma enhanced chemical vapour deposition (PECVD) with the Ti containing nanocrystalline carbon (Ti/a-C:H) film obtained by unbalanced magnetron sputter deposition (UMSD) in nN load range. Towards that purpose, DLC and Ti/a-C:H films are deposited on silicon substrate by PECVD and UMSD processes respectively. The microstructural features and the mechanical properties of these films are determined by scanning electron microscope (SEM), transmission electron microscope (TEM) and nano indenter. The surface topographies and the friction force surfaces of these films are evaluated by means of an atomic force microscope (AFM). The results show that although PECVD DLC film has higher elastic modulus and higher hardness than UMSD Ti/a-C:H film, the surface roughness and the friction coefficient of PECVD film is significantly higher than that of UMSD Ti/a-C:H film.  相似文献   

15.
《Diamond and Related Materials》2000,9(9-10):1762-1766
In this study, we developed a novel method of synthesizing metal-doped diamond-like carbon films (DLC) using the cathodic arc evaporation (CAE) process. Intense Cr plasma energy activated the decomposition of hydrocarbon source gas C2H2 to form a metal-doped amorphous carbon film on steel substrates. We deposited a Cr interlayer to prevent interdiffusion between DLC and the steel substrates. When the C2H2 partial pressure is higher than 1.3 Pa, the deposition reaction switched from Cr3C2 to DLC formation. The result is a hydrogenated DLC thin film possessing excellent microhardness as high as 3824 Hv(25g), and for which the incorporation of a Cr interface and Cr doping in the DLC matrix ensure film ductility and sufficient film adhesion. We employed Raman spectroscopy to evaluate the influences of reactive gas flow and substrate bias on the DLC composition; we carried out the microstructure and mechanical property measurements by scanning electron microscopy (SEM), X-ray diffraction (XRD), glow discharge optical spectroscopy (GDS) and wear tests.  相似文献   

16.
Diamond-like carbon (DLC) films were synthesized by Ar+ sputtering graphite with concurrent Ne+ bombardment. Transmission electron microscopy diffraction revealed that some diamond crystals were distributed in the amorphous matrix of DLC films synthesized under Ne+ bombardment at an energy of 200 eV and ion current density of 0.19 mA cm−2. X-ray photo electron spectra showed that the valence band of the DLC films was similar to that of diamond, and the binding energy of electrons was 284.9 eV. The DLC films possessed a high hardness of 42.14 GPa and excellent wear resistance. It was confirmed that the wide atomic intermixed film-substrate interface meant that the DLC films would improve greatly the wear-resistant properties of AISI 52100 steel if the DLC films were coated on its surface.  相似文献   

17.
In this paper, the synthesis of mesoporous Mo-doped titania films templated by cellulose nanocrystals (CNCs) and their photocatalytic performance are reported for the first time. The prepared titania composite precursors containing the CNCs and molybdenum chloride were spin-coated on indium tin oxide (ITO) glass substrate, followed by calcining at 400?°C for 1?h. X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscope (SEM), and UV–vis spectrometer were employed to characterize the phase composition, pore structure, morphology, and optical property of the titania films in relation to CNCs templating and Mo doping. Photocatalytic performances of the titania films were also evaluated on the photodegradation of trichloroethylene under a fluorescent light source. The Mo-doped titania films with CNCs templating were highly transparent and mesoporous, exhibiting only anatase phase, high specific surface areas ranging in 135.4 – 149.0?m2/g, and small crystallite sizes of 9.5 – 11.1?nm. The results indicate that Mo ions were successfully doped by substituting for Ti ions in the titania lattice. The Mo doping stabilized the anatase phase and also increased the surface area of the CNCs-templated titania film while decreasing the mean pore width. Notably, the visible light absorption capacity and photocatalytic activity of the CNCs-templated titania films doped with Mo were dramatically greater than those of the pure and the CNCs-templated titania films, which is ascribed to the decreased recombination rate of photoexcited charges and the increased surface area with aids of the CNCs templating and the Mo doping.  相似文献   

18.
Implants containing antimicrobial metals may reduce morbidity, mortality, and healthcare costs associated with medical device-related infections. We have deposited diamondlike carbon–silver (DLC–Ag), diamondlike carbon–platinum (DLC–Pt), and diamondlike carbon–silver–platinum (DLC–AgPt) thin films using a multicomponent target pulsed laser deposition process. Transmission electron microscopy of the DLC–silver and DLC–platinum composite films revealed that the silver and platinum self-assemble into nanoparticle arrays within the diamondlike carbon matrix. The diamondlike carbon–silver film possessed hardness and Young’s modulus values of 37 GPa and 331 GPa, respectively. The diamondlike carbon-metal composite films exhibited passive behavior at open-circuit potentials. Low corrosion rates were observed during testing in a phosphate-buffered saline (PBS) electrolyte. In addition, the diamondlike carbon–metal composite films were found to be immune to localized corrosion below 1000 mV (SCE). DLC–silver–platinum films demonstrated exceptional antimicrobial properties against Staphylococcus bacteria. It is believed that a galvanic couple forms between platinum and silver, which accelerates silver ion release and provides more robust antimicrobial activity. Diamondlike carbon–silver–platinum films may provide unique biological functionalities and improved lifetimes for cardiovascular, orthopaedic, biosensor, and implantable microelectromechanical systems.  相似文献   

19.
The mechanical and frictional properties of hydrogen- and oxygen-terminated nanocrystalline diamond films (NCD) grown by hot-filament chemical vapor deposition (HFCVD) have been investigated in the present work.The structure and morphology of the NCD films have been characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman-effect spectroscopy. In addition, X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) have been used to investigate the surface chemical groups on the NCD surface. Mechanical and frictional properties are determined using atomic force microscopy (AFM), nano-indentation, nano-scratching and micro-tribometer. The friction behavior of these films in the load range of 25 to 200 mN under reciprocating sliding conditions, using steel counter-body material has been thoroughly studied.It is noted that these films are highly crystalline with nanometer size grains and contain a very high fraction of sp3 carbon bonds. They exhibit high hardness and high elastic modulus. The friction coefficient of the film is lower under unidirectional scratch with diamond indenter than the friction coefficient under low load reciprocating sliding against steel ball. Transfer of the film from the counter-body, oxidation of transfer film and mixing of transfer film with carbonaceous layer on the worn surfaces are responsible for such behavior. Although, the friction responses of H-terminated and O-terminated films are similar under unidirectional scratch with diamond indenter, the friction coefficient of O-terminated film is always higher than the friction coefficient of H-terminated film under reciprocating sliding condition against steel counter-body material.  相似文献   

20.
A recently suggested method to measure the elastic modulus of diamond-like carbon (DLC) films was reviewed. This method used a DLC bridge or free overhang which is free from the mechanical constraint of the substrate. Because of the high residual compressive stress of the DLC film, the bridge or the overhang exhibited a sinusoidal displacement on removing the mechanical constraint. Measuring the amplitude and wavelength of the sinusoidal displacement made it possible to measure the strain of the film which occurred by stress relaxation. Combined with independent stress measurement using the laser reflection method, this method allowed the calculation of the biaxial elastic modulus of the DLC film. This method was successfully applied to obtain the elastic properties of various DLC films from polymeric hydrogenated amorphous carbon (a-C:H) to hard tetrahedral amorphous carbon (ta-C) films. Since the substrate is completely removed from the measurement system, this method is insensitive to the mechanical properties of substrate. The mechanical properties of very thin DLC films could be thus measured and then can reveal the structural evolution of a-C:H films during the initial stages of deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号