首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrical surface properties of ultrananocrystalline diamond/amorphous carbon composite films have been investigated by four-point probe I/V and Hall measurements, whereas impedance spectroscopy has been used to establish the electrical bulk properties of the films. It turned out that the surface is p-type conductive with a resistivity of 0.14 Ω cm and a sheet carrier concentration of 7.6 × 1013 cm?2. The bulk resistivity is higher by almost seven orders of magnitude (1.3 × 106 Ω cm). The bulk conduction is thermally activated with an apparent activation energy of 0.17 eV. From Cole–Cole plots of the impedance spectra it can be concluded that there are three different contributions to the bulk conductivity. In order to try to identify these three components contributing to the electrical bulk conduction, Raman spectra have been recorded at five different wavelengths from the IR to UV region. These measurements showed that the UNCD/a-C films consist of at least three components: diamond nanocrystallites, an amorphous carbon matrix, and trans-polyacetylene-like structures probably at the interface between these two.  相似文献   

2.
Boron doped diamond layers have been grown on (110) single crystal diamond substrates with B/C ratios up to 20 ppm in the gas phase. The surface of the diamond layers observed by scanning electron microscopy consists of (100) and (113) micro-facets. Fourier Transform Photocurrent Spectroscopy indicates substitutional boron incorporation. Electrical properties were measured using Hall effect from 150 to 1000 K. Secondary ion mass spectrometry analyses are consistent with the high incorporation of boron determined by electrical measurements. A maximum mobility of 528 cm2 V 1 s 1 was measured at room temperature for a charge carrier concentration of 1.1 1013 cm 3. Finally, properties of boron doped (110) diamond layers are compared with layers on (100) and (111) orientated substrates.  相似文献   

3.
By hot-filament (HF) chemical vapor deposition (CVD), heavily boron (B)-doped single-crystal diamond (100) films were fabricated and their structural and electrical properties were studied. We did not observe the soot formation, which is frequently observed and limits the performances in the case of microwave plasma (MWP) CVD. The B concentration was successfully controlled over the range from 1019 to 1021 cm 3. Hillock-free films were obtained, whose mean surface roughness measured by atomic force microscopy (AFM) was less than 0.1 nm. From the reciprocal space mapping (RSM) around 113 diamond reflection, it was revealed that the films possess the smaller lattice expansion than that expected from the Vegard's law. The room-temperature resistivity was decreased lower than 1 mΩ·cm for B concentration ~ 1021 cm 3. These results indicate that the HFCVD possesses large potential for fabricating the device-grade p+ diamond.  相似文献   

4.
Semiconducting n-type diamond can be fabricated using phosphorus as a substitutional donor dopant. The dopant activation energy level at 0.58 eV is deep. At high dopant concentrations of 1020 cm 3 the activation energy reduces to less than 0.05 eV. Phosphorus doping at concentrations of 1020 cm 3 or higher has been achieved with epitaxial growth on the (111) diamond crystallographic surface. In this work epitaxial growth of diamond with high phosphorus concentrations exceeding 1020 cm 3 is performed using a microwave plasma-assisted chemical vapor deposition process with process conditions that include a pressure of 160 Torr. This pressure is higher than previous phosphorus doping reports of (111) surface diamond growth. The other growth conditions include a feedgas mixture of 0.25% methane and 500 ppm phosphine in hydrogen, and a substrate temperature of 950–1000 °C. The measured growth rate was 1.25 μm/h. The room temperature resistivity of the heavily phosphorus doped diamond was 120–150 Ω-cm and the activation energy was 0.027 eV.  相似文献   

5.
We survey methods of synthesis of boron doped diamond with high pressure-high temperature techniques. New route is proposed for synthesis of relatively large heavily boron doped diamond single crystals, which exhibit superconductivity. Superconducting boron-doped diamond samples were synthesized with isotopes of 10B, 11B, 13C and 12C. We claim the presence of a carbon isotope effect on the superconducting transition temperature, which supports the “diamond–carbon”-related nature of superconductivity and the importance of the electron–phonon interaction as the mechanism of superconductivity in diamond. Isotope substitution permits us to relate almost all bands in the Raman spectra of heavily boron-doped diamond to the vibrations of carbon atoms. The 500 cm? 1 Raman band shifts with either carbon or boron isotope substitution and may be associated with vibrations of paired or clustered boron.  相似文献   

6.
Here we experimentally study the microwave absorption and near-field radiation behavior of monolayer and few-layer, large-area CVD graphene in the C and X bands. Artificial stacking of CVD graphene reduces the sheet resistance, as verified by non-contact microwave cavity measurements and four-probe DC resistivity. The multilayer stacked graphene exhibits increased absorption determined by the total sheet resistance. The underlying mechanism could enable us to apply nanoscale graphene sheets as optically transparent radar absorbers. Near-field radiation measurements show that our present few-layer graphene patches with sheet resistance more than 600 Ω/sq exhibit no distinctive microwave resonance and radiate less electromagnetic power with increasing layers; however, our theoretical prediction suggests that for samples to be practical as microwave antennas, doped multilayer graphene with sheet resistance less than 10 Ω/sq is required.  相似文献   

7.
Contact properties of Palladium (Pd) on the surface of hydrogen-terminated single crystal diamond were investigated with several treatment conditions. 150 nm Pd pad was deposited on diamond surface by thermal evaporation technique, which shows good Ohmic properties with the specific contact resistivity (ρc) of 1.8 × 10 6 Ω cm2 evaluated by Transmission Line Model. To identify the thermal stability, the sample was annealed in Ar ambient from 300 to 700 °C for 3 min at each temperature. As the temperature increased, ρc firstly decreased to 4.93 × 107 Ω cm2 at 400 °C and then increased. The barrier height was evaluated to be − 0.15 eV and − 0.03 eV for as-deposited and 700 °C annealed sample by X-ray photoelectron spectroscopy analysis. Several surface treatments were also carried out to determine their effect on ρc, among which HNO3 vapor treated sample indicates a lower value of 5.32 × 106 Ω cm2.  相似文献   

8.
The synthesis of diamond films with extreme insulating properties is of great interest for most diamond film applications in nanoelectronics. SOD (Silicon-On-Diamond) is a promising alternative to standard SOI (Silicon-On-Insulator) because of the high heat-spreading capability of diamond material. Current Fully Depleted MOS processing technologies require a thickness of the dielectric buried layer of 150 nm. Synthesis of polycrystalline diamond films is already well documented. Nonetheless, the difficulties here are to keep their high thermal conductivity and their high electrical resistivity in spite of the reduction of the diamond layer thickness. This study aims at the fine control of both the nucleation density and the growth process to enable the fabrication of optimized fully covered diamond films as thin as possible.A mathematical model describing the coalescence was used to determine the surface coverage of the diamond film according to the linear growth of the diamond nanocrystals for different nucleation densities. The model gives information on the nucleation density needed to obtain a covering diamond film within ultrathin diamond layer thickness. To corroborate the coalescence model, diamond layers with different surface coverages were characterized. Our work led to ultrathin diamond layers (thickness below 140 nm) exhibiting electrical resistivities above 2 × 1013 Ω cm.  相似文献   

9.
In the present work iridium layers forming a mesh on diamond have been studied as potential candidates for buried electrodes or stopping layers in an ELO process for heteroepitaxial diamond. Thin iridium layers (∼ 15 nm) were deposited by e-beam evaporation at ∼ 700 °C on the facets of individual (001)-oriented CVD diamond crystallites and macroscopic Ib HPHT substrates with off-axis angles of several degrees. The heteroepitaxial iridium films formed a mesh with 10–200 nm large holes. These were penetrated by homoepitaxial diamond in a microwave plasma chemical vapour deposition process (MWPCVD) burying the iridium layer completely after 15 min of diamond growth. High resolution X-ray diffraction including reciprocal space mapping and Raman spectroscopy was used to characterize the structural properties of the diamond overlayer on the Ib HPHT substrate. It was monocrystalline with an FWHM of 0.03–0.05° of the X-ray rocking curve. Its lattice planes were tilted by ∼ 0.01° with respect to the substrate and showed a macroscopic strain of − 10 4 perpendicular to the surface. Besides the smaller lattice constant due to the lack of nitrogen the strain is mostly attributed to a tensile in-plane stress state. Strain and tilt can be attributed to the lateral overgrowth and the off-axis angle of the substrate.  相似文献   

10.
It is confirmed that a small amount of nitrogen incorporated into chemical vapor deposited diamond films dramatically affects their electrical properties. Nitrogen can be incorporated into diamond films through the leak of vacuum system and/or from the impurity in source gases. Because a nitrogen atom can be a deep donor in diamond crystal, the p-type semiconducting properties of boron doped diamond films can be degraded even by the small amount of nitrogen. The small amount of nitrogen in chemical vapor deposited diamond films was measured by cathodoluminescence spectroscopy. For the detection of nitrogen, the N–V center was intentionally induced by defect formation through ion beam irradiation and subsequent annealing. The luminescence intensity of the N–V center was decreased by reducing the leak of the vacuum system and by upgrading the purity of the source gases. Both the carrier density and the Hall mobility of the boron doped diamond films were successfully improved by the control of nitrogen contamination. Using extremely high pure CH4, H2 and B2H6 in a tightly sealed vacuum system, the total amount of nitrogen impurity in the source gas was controlled to <80 ppm in the N/C atomic ratio resulting in a Hall mobility of 1600 cm2/Vs with a hole concentration of >1014 cm−3 at the room temperature in a 10-ppm-boron doped homoepitaxial diamond film.  相似文献   

11.
《Ceramics International》2017,43(6):5002-5006
High temperature lead-free Bismuth layer-structured (Li, Ce, Y)-substituted CBN piezoelectric ceramics were prepared by the solid-state reaction method. The phase structure, microstructure, piezoelectric property, dielectric property, thermal stability and electric property of the (Li, Ce, Y)-substituted CBN ceramics were studied. X-ray diffraction and SEM revealed the doped ceramics had typical bismuth layer-structure. The piezoelectric coefficient was improved significantly and the maximum value was ~16.1 pC/N.The Curie temperature of all the samples were in the range of 925–941 °C that was close to or even excess the value of pure CBN ceramics. The resistivity were studied deeply and all the samples possessed excellent resistivity at high temperature (500 °C, ~106 Ω cm; 600 °C, ~105 Ω·cm). The thermal depoling behavior of the ceramics was researched in detail and the doped ceramics exhibited outstanding thermal stability. All the results indicate the (Li, Ce, Y)-substituted CBN ceramics possesses preeminent property, making it promising for application especially in high temperature territories.  相似文献   

12.
Ion-beam-analyses (IBA) on a boron doped plasma-deuterated single crystal diamond are reported. Such samples have been reported to show an as-yet unexplained (Nature Materials 2, 482 (2003)) conversion from p-type (when as grown-B doped) to n-type (when deuterated). The present results yield information on the degree of crystallinity and on the lattice location of the B and D in the sample. They show that the diamond epitaxy is good, that the location of the B (even after deuteration) is mostly substitutional. However, the deuterium is not aligned along the <100> crystallographic axis. The absolute concentrations of B and D indicate that the n-type conductivity is associated with a B–Dn complex with n  2, in agreement with earlier experiments and some theoretical models. A surface damage layer of about 2 nm following the plasma exposure is also reported.  相似文献   

13.
Highly boron doped diamond tips on diamond cantilevers have been prepared by means of the moulding technique and been tested for applications in scanning probe microscopy measurements for the characterization of semiconductor devices. Tips doped with ca 1% boron show a resistivity of some 10−3 Ωcm; their radius of curvature is ca 20 nm. With respect to wear resistance, they are superior to either nitride probes also fabricated by the moulding technique or to tapping mode silicon tips. Finally, first measurements revealed the suitability of such probes for applications in scanning spreading resistance microscopy, scanning capacitance microscopy and nanopotentiometry measurements.  相似文献   

14.
Using MeV-range protons to transmute a small fraction of host nuclei into n- or p-type dopants, we have demonstrated a novel method to dope challenging wide bandgap semiconductors. In particular, we have doped isotopically-enriched 13C diamond and AlGaN films using this method focusing on the 13C + 1H  14N + γ, radiative proton capture resonance at 1.75 MeV and 27Al + 1H  28Si + γ proton capture resonance at 0.997 MeV. Both samples sustained primarily end-of-range damage which was annealable in AlGaN. We have performed a variety of measurements to characterize the doped samples including Raman spectroscopy, STM, and X-ray diffraction on the doped samples which suggest the viability of IBNTD as a doping method. Calculations indicate that doping layer thicknesses of the order of 10 nm are achievable. Possible doping concentrations using this technique are also estimated.  相似文献   

15.
Boron was doped into diamond films which were synthesized homoepitaxially on polished (100) diamond substrates by means of microwave plasma-assisted chemical vapor deposition (MPCVD) using trimethylboron as the dopant at a constant substrate temperature of 1073 K. The morphologies and electrical properties of the synthesized diamond films were dependent on the total reaction pressure. A maximum Hall mobility, 760 cm2 V−1 s−1, was obtained for the film synthesized at 10.7 kPa. The values of Hall mobility were comparable with those obtained for B2H6-doped films at corresponding hole concentrations.  相似文献   

16.
《Ceramics International》2017,43(10):7543-7551
The deposition rate, transmittance and resistivity of aluminium-doped zinc oxide (AZO) films deposited via radio frequency (r.f.) sputtering change with target thickness. An effective method to control and maintain AZO film properties was developed. The strategy only involved the regulation of target bias voltage of r.f. magnetron sputtering system. The target bias voltage considerably influenced AZO film resistivity. The resistivity of the as-deposited AZO film was 9.82×10−4 Ω cm with power density of 2.19 W/cm2 at target self-bias of −72 V. However, it decreased to 5.98×10−4 Ω cm when the target bias voltage was increased to −112 V by applying d.c. voltage. Both growth rate and optical band gap of AZO film increased with the absolute value of target bias voltage – growth rate increased from 10.54 nm/min to 25.14 nm/min, and band gap increased from 3.57eV to 3.71 eV when target bias voltage increased from −72 V to −112 V at r.f. power density of 2.19 W/cm2. The morphology of AZO films was slightly affected by the target bias voltage. Regulating target bias voltage is an effective method to obtain high-quality AZO thin films deposited via r.f. magnetron sputtering. It is also a good choice to maintain the quality of AZO film in uptime manufacturing deposition.  相似文献   

17.
《Ceramics International》2017,43(11):8391-8395
Titanium dioxide (TiO2) films doped with different indium (In) concentrations have been prepared on SrTiO3 (STO) substrates by high vacuum metalorganic chemical vapor deposition (MOCVD). X-ray diffraction (XRD) analyses revealed the TiO2 films doped with low In concentrations to be [001] oriented anatase phase and the films with high In concentrations to present polycrystalline structures. The 1.8% In-doped TiO2 film exhibited the best electrical conductivity properties with the lowest resistivity of 8.68×10−2 Ω cm, a Hall mobility of 10.9 cm2 V−1 s−1 and a carrier concentration of 6.5×1018 cm−3. The films showed excellent transparency with average transmittances of over 85% in the visible range.  相似文献   

18.
High concentrations of lithium (~ 5 × 1019 cm 3) and nitrogen (~ 3 × 1020 cm 3) have been simultaneously incorporated into single-crystal and microcrystalline diamond films using Li3N and gaseous ammonia as the sources of Li and N, respectively. Using sequential deposition methods, well-defined localised layers of Li:N-doped diamond with a depth spread of less than ± 200 nm have been created within the diamond. The variation in Li:N content and amount of diffusion within the various types of diamond suggests a model whereby these atoms can migrate readily through the grain-boundary network, but do not migrate much within the grains themselves where the diffusion rate is much slower. However, the high electrical resistivity of the doped films, despite the high Li and N concentrations, suggests that much of the Li and N are trapped as electrically inactive species.  相似文献   

19.
Recently, superconductivity has been found in heavily boron-doped diamond prepared by high temperature/high pressure synthesis or chemical vapour deposition. An alternative doping method of technological relevance is ion implantation. It is an open question whether superconductivity can also be obtained in boron-implanted diamond. Here we report on the transport and magnetic properties of high dose (2.3 × 1016–1.7 × 1017 cm 2) boron-implanted natural IIa diamond samples doped at elevated temperature of 900 °C and subsequently annealed at 1500 °C and 1700 °C. For comparison implantation at room temperature was also carried out. The samples were further characterized by Raman and infrared spectroscopy. No superconductivity could be detected in the samples at temperatures down to 40 mK. We discuss the possible origin for the absence of superconductivity.  相似文献   

20.
Dielectric properties of Pb(Fe2/3W1/3)O3 ceramic doped with 0.05–1 mol% of MnO2 or Co3O4 were investigated in a wide temperature range from −160 to 450 °C at frequencies 10 Hz–1 MHz. Besides the maxima corresponding to the ferroelectric–paraelectric transition, at higher temperatures other peaks in temperature dependencies of relative electrical permittivity and dissipation factor were observed, attributed to dielectric relaxation. The location and height of these peaks are strongly related to frequency and the dopant level. Both MnO2 and Co3O4 addition caused a significant increase in the resistivity of PFW ceramic—from 106 Ω cm for undoped samples to 1011 Ω cm for those with 1 mol% of a dopant. The activation energies of relaxation calculated on the basis of dielectric measurements are very close to the conduction activation energies determined in similar temperature range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号