首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stability and decomposition of graphitic C3N4 (g-C3N4) were studied in the pressure and temperature range of 10–25 GPa and up to 2000 °C by multi-anvil experiments and phase characterization of the quenched products. g-C3N4 was found to remain stable at relatively mild temperatures, but decomposes to graphite and nitrogen at temperatures above 600–700 °C and up to 15 GPa, while it decomposes directly to diamond (plus nitrogen) above 800–900 °C and between 22 and 25 GPa. The estimated decomposition curve for g-C3N4 has a positive slope (~ 0.05 GPa/K) up to ~ 22 GPa, but becomes inverted (negative) above this pressure. The diamond formed through decomposition is characterized by euhedral crystals which are not sintered to each other, but loosely aggregated, suggesting the crystallization in a liquid (nitrogen) medium. The nitrogen release from the graphitic CN framework may also play an important role in lowering the activation energy required for diamond formation and enhancing the grain growth rate. No phase transition of g-C3N4 was found in the studied P–T range.  相似文献   

2.
In the paper we report on laser surface modification of super hard micrometer-thick tetrahedral amorphous carbon (ta-C) films in the regime of single-shot irradiation with KrF laser pulses (wavelength 248 nm, pulse duration 20 ns), aimed at investigations of the laser-induced changes of the structure and surface properties of the ta-C films during graphitization and developing ablation processes. Based on the analysis of surface relief changes in the laser-irradiated spots, characteristics of the single-shot graphitization and ablation of the 2-μm-thick ta-C film are determined. Using Raman spectroscopy, it is found that during the graphitization regime the structure transformation and growth of graphitic clusters occur according to the relationship I(D)/I(G)  La2, but after reaching the ablation threshold the Tuinstra-Koenig relationship I(D)/I(G)  1/La describes further growth of the graphitic cluster size (La) during developing ablation of the ta-C film with nanosecond pulses. The maximal size of graphitized clusters is estimated as La = 4–5 nm. The studies of nanomechanical properties of laser-patterned ta-C films using the lateral force microscopy and force modulation microscopy have evidenced lower friction forces (between diamond-coated tips and film surface) and lower stiffness in the laser-graphitized areas. The laser-produced graphitic layer acts as a solid lubricant during sliding of the diamond-coated tips on the ta-C film surface in ambient air (~ 50% RH); the lubricating role of adsorbed water layers is suggested to be significant at low loads on the tips. The results of this work demonstrate that the UV laser surface texturing in the regime of graphitization is a promising technique to control the friction and surface elasticity of super hard amorphous carbon films on the micro and nanoscale.  相似文献   

3.
The formation of graphitic nanocrystallites at the surface of amorphous carbon under large mechanical stresses was examined by using micro-Raman spectrometry, transmission electron microscopy and in-situ compressions. In the Raman analyses of severely deformed (above a strain energy density criterion of 5.9 J/m2) surface regions of nanoscratched and nanoindented amorphous carbon films, two additional sharp and narrow peaks, DGr and GGr at 1330 and 1580 cm−1, appeared from the main unchanged broad spectra, revealing the transformation of some small-range amorphous carbon to nanocrystalline graphite. Transmission electron microscopic images presented the formation of surface shear layer within which dispersed graphitic nanocrystallites (a size of about 3 nm) were formed in the remaining amorphous matrix. The in-situ nanoscopic observation of amorphous carbon nanopillars under compressions confirmed the formation of graphitic nanocrystallites at pillar edge surfaces. The formed graphite (0 0 1) and (1 0 0) lattices were well oriented along maximum resolved shear stresses, being an evidence of lattice reconstruction and suggesting a possibility of stress-induced graphitization of amorphous carbon in the absence of heat.  相似文献   

4.
Pulsed laser ablation of a graphite target was carried out by ArF excimer laser deposition at a laser wavelength of 193 nm and fluences of 10 and 20 J/cm2 to produce diamond-like carbon (DLC) films. DLC films were deposited on silicon and quartz substrates under 1 × 10? 6 Torr pressure at different temperatures from room temperature to 250 °C. The effect of temperature on the electrical and optical properties of the DLC films was studied. Laser Raman Spectroscopy (LRS) showed that the DLC band showed a slight increase to higher frequency with increasing film deposition temperature. Spectroscopic ellipsometry (SE) and ultraviolet–visible absorption spectroscopy showed that the optical band gap of the DLC films was 0.8–2 eV and decreased with increasing substrate temperature. These results were consistent with the electrical resistivity results, which gave values for the films in the range 1.0 × 104–2.8 × 105 Ω cm and which also decreased with deposition temperature. We conclude that at higher substrate deposition temperatures, DLC films show increasing graphitic characteristics yielding lower electrical resistivity and a smaller optical band gap.  相似文献   

5.
We report on the grain size dependent morphological, physical and chemical properties of thick microwave-plasma assisted chemical vapor deposited (MPCVD) diamond films that are used as target materials for high energy density physics experiments at the Lawrence Livermore National Laboratory. Control over the grain size, ranging from several μm to a few nm, was achieved by adjusting the CH4 content of the CH4/H2 feed gas. The effect of grain size on surface roughness, morphology, texture, density, hydrogen and graphitic carbon content was systematically studied by a variety of techniques. For depositions performed at 35 to 45 mbar and 3000 W microwave power (power density ~ 10 W cm 3), an abrupt transition from micro-crystalline diamond to nanocrystalline diamond was observed at 3% CH4. This transition is accompanied by a dramatic decrease in surface roughness, a six percent drop in density and an increasing content in hydrogen and graphitic carbon impurities. Guided by these results, layered nano-microhybrid diamond samples were prepared by periodically changing the growth conditions from nano- to microcrystalline.  相似文献   

6.
In this work, the influence of surface topography and micro structural changes on the tribological properties of tetrahedral amorphous carbon coatings (ta-C) structured using a holographic technique the direct laser interference pattering (DLIP) is investigated. By utilizing a nanosecond pulsed UV-laser (wavelength 355 nm), both ablation and graphitization thresholds were determined as a function of the pulse number. Incubation effects for the ablation threshold ( ~ 205 mJ cm 2) were found to be negligible. However, for the graphitization of the film thresholds varying from 47 to 74 mJ cm 2 were observed depending on the number of laser pulses utilized (from 1 to 30) and thus obtaining an incubation factor of 1.13. Using two- and three-beam interference setups, dot- and line-like periodic arrays were fabricated. The tribological performance of these patterns was investigated under reciprocating sliding with a ball on disk method under non-lubricated conditions showing that coefficient of friction can be reduced from ~ 0.089 (un-patterned) to ~ 0.055 patterned ta-C ( ~ 30% reduction). The results can be explained based on the reduction of surface contact area combined with high hardness as well as the good intrinsic tribological properties of the ta-C films.  相似文献   

7.
The unsatisfactory stability of CNT under high temperature or subject to strong oxidants has limited the potential use of p- and n-type field-effect transistors (FETs). Promisingly, boron nitride (BN) nanotubes are known to have the excellent resistance to oxidant and thermal stability at high temperature as well as the uniform electronic properties, which rends their possible application as alternative FET device. In this paper, through the theoretical computation of the noncovalent functionalization of BN nanotube by various aromatic molecules (including C10H8, C14H10, porphyrin, DDQ, and TCNQ molecules), we for the first time evaluate its possibility as a candidate of stable FET device. We find that: (i) these aromatic molecules can be stably adsorbed on the studied BN with the adsorption energy ranging from ? 0.22 (C10H8) to ? 0.42 eV (porphyrin); (ii) the adsorption of electrophilic molecules on the outer sidewall of BN nanotube realizes a p-type semiconductor with a smaller band gap (~ 0.90 eV); (iii) exoherdral adsorption of nucleophilic aromatic molecules leads to an n-type semiconductor. This novel BN nanotube-based material offers great promise for molecule electronics in terms of their good stability.  相似文献   

8.
The high-temperature characteristics of diamond Schottky diodes fabricated using Ag or Ni on in-situ boron-doped diamond were examined. Up to 600 °C, Ag Schottky diodes exhibited a high rectification ratio of the order of 104. Even at ~ 750 °C, their rectification ratio was about 10, indicating that diamond field effect transistors with Ag Schottky diodes can operate at this temperature. In contrast, Ni Schottky diodes did not show clear rectification above 600 °C. An analysis of the IV curves indicated that the Ag Schottky diodes have a higher rectification ratio than the Ni Schottky diodes at high temperatures due to their higher barrier heights (ϕB = ~ 2.0 and ~ 0.7 eV for Ag and Ni, respectively).  相似文献   

9.
Graphite and SiO2 composite was prepared by hot-pressing at 1300 °C for 3 h under a uniaxial load of 20 MPa. The ablation behavior of graphite and SiO2 composite by high-intensity continuous laser was investigated. The X-ray diffraction, scanning electron microscopy, 3D-super-depth-digital microscopy, Raman spectroscopy and reflectivity were used to characterize the sample. The results show that under low laser power (500 W/cm2), and no obvious damage appears, while just the irradiation area changes from grey to white and the reflectivity increases. With the laser power increasing, some heat-absorbing chemical reactions between graphite and SiO2 occurred on the surface, and SiC was produced, which can increase the energy consumption of the surface and thus reduce the absorbed laser energy of the interior. Moreover, at the center of irradiation area, the formation of columnar structure graphite is beneficial to obstruct laser energy conduction from surface to interior material.  相似文献   

10.
The nitrogen incorporated nanocrystalline diamond (NCD) films were grown on n-silicon (100) substrates by microwave plasma enhanced chemical vapor deposition (MPECVD) using CH4/Ar/N2 gas chemistry. The effect of surface passivation on the properties of NCD films was investigated by hydrogen and nitrogen-plasma treatments. The crystallinity of the NCD films reduced due to the damage induced by the plasma treatments. From the crystallographic data, it was observed that the intensity of (111) peak of the diamond lattice reduced after the films were exposed to the nitrogen plasma. From Raman spectra, it was observed that the relative intensity of the features associated with the transpolyacetylene (TPA) states decreased after hydrogen-plasma treatment, while such change was not observed after nitrogen-plasma treatment. The hydrogen-plasma treatment has reduced the sp2/sp3 ratio due to preferential etching of the graphitic carbon, while this ratio remained same in both as-grown and nitrogen-plasma treated films. The electrical contacts of the as-grown films changed from ohmic to near Schottky after the plasma treatment. The electrical conductivity reduced from ~ 84 ohm 1 cm 1 (as-grown) to ~ 10 ohm 1 cm 1 after hydrogen-plasma treatment, while the change in the conductivity was insignificant after nitrogen-plasma treatment.  相似文献   

11.
Ultra high temperature ceramics (UHTCs) based composite ZrB2/20 vol.% Cu was prepared by spark plasma sintering (SPS) at 1650 C° for 3 min. The ablation behavior of composite irradiated for 2–20 s by 20 MW/m2 high-intensity continuous laser was investigated. The phase and microstructure evolution of ZrB2/20 vol.% Cu during ablation was demonstrated by XRD and SEM, respectively. The results reveal that no macroscopic damage but only one ablated layer with 40 μm in thickness is observed even after being ablated for 20 s. It implies that ZrB2/20 vol.% Cu composite exhibits good ablation resistance against high-intensity continuous laser. The continuous Cu in composite evaporates preferentially, which impacts on the following ablation behavior. The generated ZrO2 at the spot center shows different forms such as closely packed nano-ZrO2, micron ZrO2 or melting ZrO2 for different ablation time. The melting ZrO2 is helpful to promote the ablation resistance of ZrB2/20 vol.% Cu.  相似文献   

12.
The dispersibility of platelet-type graphite nanofibers (PGNFs), an archetype of carbon material with a surface dominated by graphitic edge planes, has been measured in 28 solvents and rationalized on the basis of solvent surface tension and Hansen solubility parameters. Successful solvents possess surface tensions of ∼25–35 mJ m−2 and substantial values of the hydrogen-bonding Hansen parameter (δH  14–16 MPa1/2), and many of them are alcohols, such as 1-butanol, ethanol or cyclohexanol. Such result is mainly attributed to the fact that the PGNF edge planes are decorated with oxygen functional groups. The dispersion behavior of the nanofibers could be changed to that typically exhibited by carbon nanotubes and graphene by means of a high temperature annealing that converted their surface edge planes to curved basal planes.  相似文献   

13.
Free-standing diamond films with 1.68 mm in polished thickness have been prepared by DC arc plasma jet CVD. By means of simply changing the placing orientation of diamond films along the laser transmission direction while testing, the through-thickness thermal conductivity (κ) together with the in-plane (κ//) thermal conductivity of free-standing diamond films were measured by laser flash technique over a wide temperature range. Results show that the thermal conductivity κ and κ// of free-standing diamond films are up to 1916 and 1739 Wm 1 K 1 at room temperature, respectively, showing small anisotropy (9%), and following the relationship κ ~ T n as temperature rises. The conductivity exhibits similar value compared to that of high-quality single crystal diamond above 500 K for both through-thickness and in-plane directions of CVD diamond films. The effects of impurities and grain boundaries on thermal conductivity of diamond films with increasing temperature were discussed.  相似文献   

14.
We report on the investigation of donor–acceptor pair (DAP) and free carrier recombination in HPHT IIa type diamonds and determination of boron concentration by differential transmittivity (DT) technique. Photoluminescence and photoluminescence excitation spectra were measured in 8–300 K temperature range and provided a broad (~ 0.67 eV) Gaussian DAP band which peaked at 2.2 eV at low temperatures, while above 200 K it sharply shifted to 2.5 eV and became more intense. Thermoluminescence measurements also demonstrated a similar tendency. This peculiarity was explained by DAP recombination between the nitrogen and the boron, the latter being in the ground and the excited states at low and high temperatures, respectively. A zero phonon line position coincided with the calculated one, when using nitrogen and boron activation energies. Scanning of DT across the sample at different delay times revealed the fast (200–500 ns) free carrier lifetime and the slow recovery time (of optically recharged boron to its initial state). The temperature dependence of the slow component decay time provided the boron activation energy of 360 meV. Saturation of the boron-related DT signal in the samples and the determined boron ionization cross section at 1064 nm (σB = 3.3 × 10 17 cm2) provided the boron density in 1014–16 cm 3 range and revealed its strongly inhomogeneous distribution across the HPHT layers. The B density was found much lower than the density of nitrogen donors (~ 1017 cm 3), which were distributed in the layers much more homogeneously.  相似文献   

15.
《Ceramics International》2017,43(8):6519-6531
The green ZrO2 ceramics were fabricated by cold isostatic pressing. Pulsed laser ablation with a wavelength of 1064 nm was performed to fabricate micro-scale textured grooves on the surface of green ZrO2 ceramics. The influence of laser parameters on surface quality was studied. The heat-affected zone around the machined grooves and micromorphology of laser-irradiated surface were investigated. Results showed that micro-scale textured grooves with a width of 30–50 µm and a depth of 15–50 µm on the green ZrO2 ceramic surfaces were successfully fabricated by pulsed laser ablation. The laser parameters had a profound influence on the surface quality of micro-scale textured grooves. Better surface quality could be obtained with frequency below 40 Hz, power below 6 W, and scanning velocity above 200 mm/s. A sintering layer was found on the laser-irradiated surfaces when frequency was above 60 Hz, power was above 10 W, and scanning velocity was below 150 mm/s. Analysis of this sintering layer revealed clear melting and resolidification of ZrO2 particles.  相似文献   

16.
This study focuses on the structural changes of vertically aligned carbon nanotube (CNT) arrays while measuring their adhesive properties and wetting behaviour. CNT forests grown by chemical vapor deposition with a height of ~ 100 µm, an outer CNT diameter of ~ 10 nm and a density of the order of ~ 1010 CNTs/cm2 show an average adhesion of 4 N/cm2 when pressed against a glass surface. The applied forces lead to the collapse of the regular CNT arrays which limits their reusability as functional dry adhesives. Goniometric water contact angle (CA) measurements on CNT forests show a systematic decrease from an initial value of ~ 126° to a final CA similar to highly orientated graphite. Environmental scanning electron microscopy shows that this loss of hydrophobicity is due to an evaporation induced compaction of CNTs together with the loss of their vertical alignment. We observe the formation of cellular patterns for controlled drying.  相似文献   

17.
Low-temperature performance of LiBF4 and LiPF6-based electrolytes in LiFePO4/Li and graphite/Li half cells was investigated. In the temperature range from 0 °C to ?40 °C, electrochemical impedance spectroscopy (EIS) results show that the charge-transfer resistance (Rct) of graphite/Li cell decreases, the Rct of LiFePO4/Li cell increases, and sum resistance of LiFePO4/Li and graphite/Li cell decreases when replacing LiPF6 with LiBF4. In the temperature range from 25 °C to ?40 °C, energy barrier (W) for Li-ion jump at the solid electrolyte interface (SEI) alters slightly from 16.04 kJ/mol to 13.60 kJ/mol in LiFePO4/Li cells, but declines greatly from 46.47 kJ/mol to 19.81 kJ/mol in graphite/Li cells when using LiBF4 instead of LiPF6, meanwhile, activation energy (ΔG) of electrode reaction is approximately the same (~60 kJ/mol). The above results indicate that the ionic conductivity is the main limiting factor for low-temperature performance of electrolytes in LiFePO4/Li cell, while factors related with electrolyte-interface are more crucial in graphite/Li cell than in LiFePO4/Li cell.  相似文献   

18.
Ultraviolet (UV) Raman and visible Raman spectroscopies were applied to study the graphitic BCx (g-BCx) phases. The Raman spectra of the g-BCx phases excited with UV laser at 244 nm have one main peak: a G peak (approximately at 1590 cm? 1), and do not have the D peak (around 1350 cm? 1) characteristic for Raman spectra of disordered graphitic phases. The D peak can be detected in all g-BCx phases when green (534 nm) or near-infrared (785 nm) lasers are used for Raman scattering excitation. The positions of the G and D peaks were found to be independent (within the experimental errors) of the B/C ratio. The pattern of the peaks in UV Raman spectra of g-BC2.1 phase indicates that the additional peaks centered at 1089 cm? 1 should be assigned to the Eg mode of B4C vibration rather than to the T mode characteristic to amorphous graphite. The high signal-to-noise (S/N) ratio and lack of fluorescence of the UV Raman spectra allow an accurate measure of bandwidth and frequency of the G peaks.  相似文献   

19.
The article reports on properties of a-C films containing different amount of Cu. Films were sputtered by unbalanced magnetron from a graphite target with Cu fixing ring in argon under different deposition conditions. Relationships between the structure, mechanical properties, macrostress σ and coefficient of friction (CoF) μ of a-C/Cu films sputtered on Si substrates were investigated in detail. Besides, a special attention was concentrated on investigation of the effect of a deposition rate aD of the a-C/Cu film on its hardness H and macrostress σ. Four main issues were found: (1) the addition of Cu into a-C film strongly influences its structure and mechanical properties, i.e. the hardness H, effective Young's modulus E⁎ macrostress σ and CoF, and makes it possible to form electrically conductive films; here E =  E / (1  ν2), E is the Young's modulus, and ν is the Poisson's ratio, (2) the hardness H and compressive macrostress σ of the a-C/Cu film decrease with increasing aD due to decreasing of total energy ET delivered to the film during its growth, (3) hard a-C/Cu films with low value of CoF (μ  0.1) can be sputtered at high deposition rates aD ranging from ~ 10 to ~ 80 nm/min, and (4) CoF decreases with increasing (i) hardness H and (ii) resistance of film to plastic deformation characterized by the ratio H3/E2 but only in the case when compressive macrostress σ is low.  相似文献   

20.
《Ceramics International》2015,41(4):5843-5851
Hot pressed monolithic ZrB2 ceramic (Z), ZrB2–20 vol% SiC composite (ZS20) and ZrB2–20 vol% SiC–10 vol% nano-graphite composite (ZS20Gn10) were investigated to determine the influence of graphite nano-flakes on the sintering process, microstructure, and mechanical properties (Vickers hardness and fracture toughness) of ZrB2–SiC composites. Hot pressing at 1850 °C for 60 min under 20 MPa resulted in a fully dense ZS20Gn10 composite (relative density: 99.6%). The results disclosed that the grain growth of ZrB2 matrix was efficiently hindered by SiC particles as well as graphite nano-flakes. The fracture toughness of ZS20Gn10 composite (7.1 MPa m1/2) was essentially improved by incorporating the reinforcements into the ZrB2 matrix, which was greater than that of Z ceramic (1.8 MPa m1/2) and ZS20 composite (3.8 MPa m1/2). The fractographical observations revealed that some graphite nano-flakes were kept in the ZS20Gn10 microstructure, besides SiC grains, which led to toughening of the composite through graphite nano-flakes pull out. Other toughening mechanisms such as crack deflection and branching as well as crack bridging, due to the thermal residual stresses in the interfaces, were also observed in the polished surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号