首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, core-shell nanoparticles were developed to achieve thermal therapy that can ablate cancer cells in a remotely controlled manner. The core-shell nanoparticles were prepared using atomic transfer radical polymerization (ATRP) to coat iron oxide (Fe3O4) nanoparticles with a poly(ethylene glycol) (PEG) based polymer shell. The iron oxide core allows for the remote heating of the particles in an alternating magnetic field (AMF). The coating of iron oxide with PEG was verified through Fourier transform infrared spectroscopy and thermal gravimetric analysis. A thermoablation (55 °C) study was performed on A549 lung carcinoma cells exposed to nanoparticles and over a 10 min AMF exposure. The successful thermoablation of A549 demonstrates the potential use of polymer coated particles for thermal therapy.  相似文献   

2.
Magnetic hyperthermia is a safe method for cancer therapy. A gap-type alternating current magnetic field (100 kHz, 100–300 Oe) is expected to be clinically applicable for magnetic hyperthermia. In this study, magnetite nanoparticles (MNPs) varying in size from 8 to 413 nm were synthesized using a chemical coprecipitation and an oxidation precipitation method to find the optimum particle size that shows a high heating efficiency in an applied magnetic field. The particles' in vitro heating efficiency in an agar phantom at an MNP concentration of 58 mg Fe/ml was measured in an applied magnetic field. In a magnetic field of 120 Oe, the temperature increase (ΔT) of the agar phantom within 30 s was 9.3 °C for MNPs with a size of 8 nm, but was less for the other samples, while in a magnetic field of 300 Oe, ΔT = 55 °C for MNPs with a size of 24 nm, and ΔT = 25 °C for MNPs with a size of 8 nm. The excellent heating efficiency of MNPs with a size of 24 nm in a magnetic field of 300 Oe may be due to a combination of the effects of both relaxation and hysteresis losses of the magnetic particles. It is believed that MNPs with a size of 8–24 nm will be useful for the in situ hyperthermia treatment of cancer.  相似文献   

3.
In this paper, the low temperature electrical conductivity and microwave absorption properties of carbon coated iron nanoparticles–polyvinyl chloride composite films are investigated for different filler fractions. The filler particles are prepared by the pyrolysis of ferrocene at 980 °C and embedded in polyvinyl chloride matrix. The high resolution transmission electron micrographs of the filler material have shown a 5 nm thin layer graphitic carbon covering over iron particles. The room temperature electrical conductivity of the composite film changes by 10 orders of magnitude with the increase of filler concentration. A percolation threshold of 2.2 and an electromagnetic interference shielding efficiency (EMI SE) of ~18.6 dB in 26.5–40 GHz range are observed for 50 wt% loading. The charge transport follows three dimensional variable range hopping conduction.  相似文献   

4.
Magnetite nanoparticles have been prepared by electrooxidation of iron in water. Surface modifications have been conducted by coating the nanoparticles with silica by a one-step synthesis in dilute sodium silicate solution. The mean size of particles was approximately 10–30 nm for the uncoated particles and 9–12 nm for the coated particles. The results obtained from thermal gravimetric/differential thermal analysis (TG/DTA) revealed that the silica layer formed by the electrochemical method was stable and could serve as a protective layer. Annealing the nanoparticles at 550 °C for 30 min converts magnetite into maghemite for the silica-coated particles, and it further converts the uncoated particles into hematite. The conversions cause the saturation magnetization to decrease for all samples.  相似文献   

5.
Magnetic drug targeting is a drug delivery system that can be used in locoregional cancer treatment. Coated magnetic particles, called carriers, are very useful for delivering chemotherapeutic drugs. Magnetic carriers were synthesized by coprecipitation of iron oxide followed by coating with polyvinyl alcohol (PVA). Characterization was carried out using X-ray diffraction, TEM, TGA, FTIR and VSM techniques. The magnetic core of the carriers was magnetite (Fe3O4), with average size of 10 nm. The room temperature VSM measurements showed that magnetic particles were superparamagnetic. The amount of PVA bound to the iron oxide nanoparticles were estimated by thermogravimetric analysis (TGA) and the attachment of PVA to the iron oxide nanoparticles was confirmed by FTIR analysis. Doxorubicin (DOX) drug loading and release profiles of PVA coated iron oxide nanoparticles showed that up to 45% of adsorbed drug was released in 80 h, the drug release followed the Fickian diffusion-controlled process. The binding of DOX to the PVA was confirmed by FTIR analysis. The present findings show that DOX loaded PVA coated iron oxide nanoparticles are promising for magnetically targeted drug delivery.  相似文献   

6.
The characteristics of the metallic powder surface play a critical role in the development of strong bonds between particles during sintering, especially when introducing elements with a high affinity for oxygen. In this study, Mn and Si have been combined in a Fe–Mn–Si–C master alloy powder in order to reduce their chemical activity and prevent oxidation during the heating stage of the sintering process. However, when this master alloy powder is mixed with an iron base powder, differences in chemical activity between both components can lead to an oxygen transfer from the iron base powder to the surface of the master alloy particles. The present research is focused on studying the evolution of the master alloy particle surface during the early stages of sintering. Surface characterization by X-ray Photoelectron Spectroscopy (XPS) shows that the master alloy powder surface is mostly covered by a thin easily reducible iron oxide layer (~ 1 nm). Mn–Si particulate oxides are found as inclusions in specific areas of the surface. Evolution of oxides during sintering was studied on green compacts containing iron powder, graphite and Fe–Mn–Si–C master alloy powder that were heat treated in vacuum (10 6 mbar) at different temperatures (from 400, 600, 800 to 1000 °C) and analyzed by means of XPS. Vacuum sintering provides the necessary conditions to remove manganese and silicon oxides from the powder surface in the range of temperatures between 600 °C and 1000 °C. When sintering in vacuum, since the gaseous products from reduction processes are continuously eliminated, oxidation of master alloy particles due to oxygen transfer through the atmosphere is minimized.  相似文献   

7.
Fe powders for thermal batteries were prepared by reduction of iron oxide powders obtained by spray pyrolysis. The iron oxide powders prepared by spray pyrolysis had fine size, spherical shape and high surface area. The morphologies of the Fe powders were affected by the preparation temperatures of the iron oxide powders. The Fe powders obtained from the iron oxide powders prepared by spray pyrolysis at 900 and 1000 °C had slightly aggregated structure of the primary powders with several microns sizes. The powders had pure Fe phases at reducing temperatures between 600 and 800 °C. The heat pellets with diameter of 18.2 mm were prepared using Fe powders and potassium perchlorate (KClO4). The porosity of the prepared heat pellet was about 40%. The break strength of the heat pellet was 0.9 kgf. The ignition sensitivity of the heat pellet was 4 W. The maximum burn rate of the heat pellet obtained from the Fe powders were 8.6 cm s?1.  相似文献   

8.
Yttrium iron garnet particles were synthesized in two different ways: first, in an ammonium nitrate melt (ANM) and second, via a solid-state reaction (SSR) route. The structural and magnetic properties of the samples were compared using XRD, SEM and dc magnetization measurements. It was observed for the ANM technique that the phase formation of YIG starts at 1000 °C and then develops with increasing temperature and sintering times. The saturation magnetization, Ms, increases sharply with increasing annealing temperature and then saturates at around 23 emu g?1 above 1100 °C, while the coercivity decreases due to the increasing particle size. An almost single-phase sample was obtained through ANM route by annealing for 2 h at 1300 °C, after which the YIG fraction in the SSR sample was only 0.34, with Ms = 7.08 emu g?1. The average particle sizes of the ANM samples were calculated using experimentally determined Ms values. It appeared that they vary from the sub-micron to the micron range, depending on the sintering temperature, and this coincides with the values determined from the SEM micrographs. These samples have homogeneous structures, small grains, good magnetic properties, and do not contain massive agglomerates. Therefore, the synthesis of YIG via the ANM technique represents another alternative to the SSR route.  相似文献   

9.
The aim of this work is to investigate the surface characteristics and corrosion behavior of NiTi (50.6 at.% Ni) shape memory alloy coated by a ceramic-like and highly biocompatible material, iridium oxide (IrO2). IrO2 coatings were prepared by thermal decomposition of H2IrCl6 · 6H2O precursor solution at the temperature of 300 °C, 400 °C and 500 °C, respectively. The surface morphology and microstructure of the coatings were investigated by scanning electron microscope (SEM) and glancing angle X-ray diffraction (GAXRD). X-ray photoelectron spectroscopy (XPS) was employed to determine the surface elemental composition. Corrosion resistance property of the coated samples was studied in a simulated body fluid at 37 ± 1 °C by electrochemical method. It was found that the morphology and microstructure of the coatings were closely related to the oxidizing temperatures. A relatively smooth, intact and amorphous coating was obtained when the H2IrCl6·6H2O precursor solution (0.03 mol/L) was thermally decomposed at 300 °C for 0.5 h. Compared with the bare NiTi alloy, IrO2 coated samples exhibited better corrosion resistance behavior to some extent.  相似文献   

10.
The microstructure of the nickel-based single-crystal superalloy DD6 after tensile deformation has been studied by transmission electron microscopy (TEM) with an energy-dispersive X-ray spectroscopy (EDS). The samples were strained to fracture at room temperature, 650 °C, 850 °C and 1020 °C along the [001] orientation. The results indicate that the yield strength at 650 °C is superior to that at room temperature (20 °C), 850 °C and 1020 °C, but low ductility was observed at 650 °C. It is demonstrated that the intermediate temperature brittleness (ITB) behavior was caused by the change of the deformation mechanism at intermediate temperature. At high temperature, the γ′ precipitates coarsening directionally along the direction perpendicular to the stress axis. This can be attributed to the directional diffusion of the chemical elements.  相似文献   

11.
Fine particles of zinc ferrite (ZnFe2O4) and calcium sodium phosphate [NaCaPO4] were crystallized in bulk x(ZnO, Fe2O3)(65?x)SiO220(CaO, P2O5)15Na2O (6  x  21 mol %) glassy matrix by heat treatment. Initial magnetization curves reveal that samples with x = 6 and 9 mol % zinc–iron oxide exhibit both ferrimagnetic and paramagnetic contributions, whereas, samples with x > 9 mol % zinc–iron oxide exhibit only ferrimagnetic contribution. This observation is supported by the disappearance of the electron paramagnetic resonance (EPR) absorption line centered at g  4.3 in samples with x > 9 mol % zinc–iron oxide. Apatite-forming ability of the glass-ceramic samples was investigated by examining apatite formation on the surface of the samples treated in simulated body fluid (SBF). Increase in apatite-forming ability was observed with an increase in zinc–iron oxide content. The results obtained have been used to understand the evolution of the apatite surface layer as a function of immersion time in SBF and glass-ceramic composition. A good correlation has also been observed between the magnetic nature of the samples and their apatite-forming ability. These materials are expected to find application as thermo-seeds in hyperthermia treatment of bone cancer.  相似文献   

12.
Nanostructured LiMnPO4 particles could be successfully synthesized by an ultrasonic spray pyrolysis method from the precursor solution; LiNO3, Mn(NO3)2·6H2O and H3PO4 were stoichiometrically dissolved into distilled water. The X-ray diffraction analysis showed that the as-prepared powders which had the desired olivine structure without any impurity phase could be obtained in the reactor temperatures ranging from 500 to 800 °C. Carbon coated LiMnPO4 could be prepared from the as-prepared powders by a dry ball-milling followed by heat treatment for 4 h in a N2 + 3% H2 atmosphere. Transmission Electron Microscopy observation confirmed that a carbon layer was formed on the surface of LiMnPO4 particles, which aimed to enhance the electronic conductivity of the material as well as inhibit the agglomeration during annealing. The carbon coated LiMnPO4 was used as cathode active materials for lithium-ion batteries, and electrochemical performance was investigated using the Li|1 M LiClO4 in EC:DEC = 1:1|LiMnPO4 cells at room temperature and 55 °C. At a charge/discharge rate of 0.05 C, the cell exhibited first discharge capacities of 70 mAh g?1 at room temperature and 140 mAh g?1 at 55 °C. Moreover, it showed excellent cycleability even at elevated temperature and a high charge/discharge rate of 2 C.  相似文献   

13.
Coral-like hydroxy sodalite (HS) particles were prepared from rice husk ash as silica source in the presence of other aqueous-based precursor materials following a simple process under hydrothermal condition at 90 °C for 15 h. The particles obtained at 90 °C for different times (6, 10 and 15 h) were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FESEM). The HS crystals along with a small amount of zeolite A particles were observed at 90 °C/6 h while phase pure HS particles were obtained at 90 °C for 10 and 15 h. The characteristic vibration bands of the HS particles were confirmed by FTIR spectroscopy. FESEM images showed that the HS particles obtained at 90 °C/15 h were coral-like morphology which were formed through the self-assembly of the smaller particles generated at the initial stage of reaction (6 and 10 h) under the same experimental conditions. A proposed mechanism for the formation of coral-like HS particles was also illustrated.  相似文献   

14.
《Materials Letters》2006,60(21-22):2620-2622
La0.76Sr0.24MnO3 + δ particles, prepared by performing a traditional, solid-state method of synthesis, were coated by uniform layers of silica via initiating hydrolysis and condensation of TEOS in aqueous–alcoholic alkali environment. The eventually obtained samples exhibited Curie temperature at ∼40 °C, and comprised core-shell particles of ∼250 nm in diameter. By varying stoichiometric ratio of cations within manganite cores of the particles, Curie point of the resulting material can be varied too, thus opening a way for the simple design of biocompatible, temperature-self-regulating particles for application in hyperthermia treatments, with Curie point thereof adjusted to a destined biological context of application.  相似文献   

15.
Nanostructured zinc oxide (nsZnO) films have been fabricated onto conducting indium–tin–oxide (ITO) coated glass plate, by cathodic electro-deposition to immobilize probe DNA specific to M. tuberculosis via physisorption based on strong electrostatic interactions between positively charged ZnO (isoelectric point = 9.5) and negatively charged DNA to detect its complementary target. Electrochemical studies reveal that the presence of nano-structured ZnO results in increased electro-active surface area for loading of DNA molecules. The DNA–nsZnO/ITO bioelectrode exhibits interesting characteristics such as detection range of 1 × 10?6 ? 1 × 10?12 M, detection limit of 1 × 10?12 M (complementary target) and 1 × 10?13 M (genomic DNA), reusability of about 10 times, response time of 60s and stability of up to 4 months when kept at 4°C.  相似文献   

16.
Cylindrical-shaped multiferroic Bi1?xLaxFeO3 (x = 0.0, 0.05, 0.1 and 0.15) were synthesized successfully by hydrothermal method. All samples were found to be rhombohedrally distorted perovskite structure. Diameter of the cylindrical particles reduces from ~450 nm for x = 0.0 to ~100 nm for x = 0.1 prepared under the same conditions. The Neél temperature as well as the dielectric constant was also found to increase with the increase in lanthanum content. Lanthanum doping also enhanced the magnetic properties. Magnetization measurements above room temperature show a significant increase in magnetization at around 400 °C. Enhanced magnetic properties due to lanthanum doping are caused by the breakage of spin cycloid as observed by electron spin resonance study.  相似文献   

17.
Spherical nickel oxide nanoparticles were synthesized by microemulsion technique using rhamnolipids as the surfactant along with n-heptane and water. Nickel hydroxide (Ni(OH)2) particles were first formed which were then calcined to obtain nickel oxide (NiO) particles. Scanning Electron Microscopy (SEM) studies revealed that the synthesized nickel hydroxide particles were spherical in shape with stacked lamellar sheets. Nickel hydroxide was converted to nickel oxide by calcinations at 600 °C for 3 h and was confirmed by X-ray Diffraction (XRD) analysis. Transmission Electron Microscopy (TEM) showed that the nickel oxide particles were crystalline and of uniform size. The effect of pH on particle size was investigated and it was found that the particle size decreased from 86 ± 8 nm at pH 11.6 to 47 ± 5 nm at pH 12.5. A novel method using rhamnolipid biosurfactant for microemulsion synthesis has been demonstrated which offers an eco-friendly alternative to conventional microemulsion technique based on organic surfactants.  相似文献   

18.
The impact toughness of M951 alloy is investigated in temperature range between 20 °C and 800 °C. The results show that the impact toughness of samples impacted at 600 °C shows highest impact toughness value, the impact toughness value drops sharply when the samples impacted at 760 °C. In addition samples impacted at 800 °C show the higher impact toughness than that of samples impact at 760 °C. The scanning electron microscope observations show that cracks initiate at carbides particles due to high stress concentration, which leads to low impact toughness value at 20 °C. The dimples which can absorb more energy are formed during the impact at 600 °C. The samples impacted at 760 °C show lowest impact toughness. Additionally, the dimples nucleation, growth and coalescence are the major fracture mechanism at elevated temperature.  相似文献   

19.
Microwave dielectric ceramics ZnTa2O6 were prepared by conventional mixed oxide route. The effects of CaF2 addition on the microstructures and microwave dielectric properties of ZnTa2O6 ceramics were investigated. Formation of second phase can be detected at the high addition of CaF2 (0.5–1.0 wt.%). Variation of grain shapes were observed with CaF2 content increasing. The sintering temperature of CaF2-doped ZnTa2O6 ceramics can be effectively lowered from 1400 °C to 1225 °C due to liquid phase effect. The microwave dielectric properties were affected by the amount of CaF2 addition. At 1225 °C for 4 h, ZnTa2O6 ceramics with 0.25 wt.% CaF2 possesses excellent microwave dielectric properties: εr = 31.32, Q × ? = 73600 GHz(6.8 GHz) and τ? = ? 6.97 ppm/°C.  相似文献   

20.
The purpose of the present study is to obtain better understanding of the influence of the coating thickness, h, coating formulation, Tg, and fluid bed temperature, Tbed, variables on the resistance to attrition of the coated sodium benzoate reference particles. Three reference coating materials (Tg = 50 – 125 – 150 °C) have been sprayed by using top spray fluid bed coater. Per each coating formulation three different coating levels (h = 1% – 5% – 9% w/w) have been obtained. The coating processes were performed at three different fluid bed temperatures (Tbed = 40 – 55 – 70 °C). The experiments have been designed according to the response surface methodology (RSM). Both single effects and interactions between single effects on the resistance to attrition (response variable) calculated by means of repeated impact tester were evaluated. From statistical analysis, the coating quantity appears to have a predominant effect on the resistance to attrition of the coated particle in these studied ranges of variables. This relationship is linear and positive, which means that an increasing quantity leads to more resistance to attrition. The interaction coating thickness – coating formulation, the interaction between the fluid bed temperature and the coating formulation and the coating formulation as well as the interaction costing thickness – fluid bed temperature were found to be very significant. On the contrary, no direct effect of the fluid bed temperature on the resistance to attrition is detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号