首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compare structural and optical properties of microcrystalline and nanocrystalline diamond (MCD and NCD, respectively) films grown on mirror polished Si(100) substrates by microwave plasma chemical vapor deposition. The films were characterized by SEM, Raman spectroscopy, XRD, and AFM. Optical properties were obtained from transmittance and reflectance measurements of the samples in the wavelength range of 200–2000 nm. Raman spectrum of the MCD film exhibits a strong and sharp peak near 1335 cm−1, an unambiguous signature of cubic crystalline diamond with weak non-diamond carbon bands. Along with broad non-diamond carbon bands, Raman spectra of NCD films show features near 1140 cm−1, the intensity of which is significantly higher in the film grown at 600°C compared to the NCD film grown at higher temperature. The Raman feature near 1140 cm−1 is related to the calculated phonon density of states of diamond and has been assigned to nanocrystalline or amorphous phase of diamond. XRD patterns of the MCD film show sharp peaks and NCD films show broad features, corresponding to cubic diamond. The rms surface roughness of the films was observed to be approximately 60 nm for MCD film that reduced substantially to 17 and 34 nm in the NCD films grown at 600 and 700°C, respectively. Tauc's optical gap for the diamond film is found to be approximately 5.5 eV. NCD grown at 700°C has a high optical absorption coefficient in the whole spectral region and the NCD film grown at 600°C shows very high transmittance (∼78%) in the near IR region, which is close to that of diamond. This indicates that the NCD film grown at 600°C has the potential for applications as optical windows since its surface roughness is significantly low as compared to the MCD film.  相似文献   

2.
Diamond is one of the best SAW substrate candidates due to its highest sound velocity and thermal conductivity. But conventional diamond films usually express facet structure with large roughness. Ultra-nanocrystallined diamond (UNCD) films grown in a 2.45 GHz IPLAS microwave plasma enhanced chemical vapor deposition (MPECVD) system on Si (100) substrates in CH4-Ar plasma possess naturally smooth surface and are advantageous for device applications. Moreover, highly C-axis textured aluminum nitride (AlN) films can be grown by DC-sputtering directly on UNCD coated Si substrate. However, properties of UNCD films are much complex than microcrystalline diamond films, that is because this is a very complex material system with large but not fixed portion of grain boundaries and sp2/sp3 bonding. Properties of UNCD films could change dramatically with similar deposition condition and with similar morphologies. A simple and quick method to characterize the properties of these UNCD films is important and valuable. Laser-induced SAW pulse method, which is a fast and accurate SAW properties measuring system, for the investigation of mechanical and structure properties of thin films without any patterning or piezoelectric layer.  相似文献   

3.
Fracture observation of polycrystalline diamond film under indentation test   总被引:1,自引:0,他引:1  
Indentation tests using Vicker's pyramidal and Rockwell spherical diamond indenters were performed for polycrystalline diamond film deposited by chemical vapour deposition (CVD) on SiC substrate. Two types of film with different crystal sizes were tested. One is a film with grain size of 5 to 10 μm, denoted as MCD. Another one is a film with grain size of less than 100 nm, denoted as NCD.In the Vicker's test, we observed clear indentation and radial cracks for the NCD film, suggesting that micro-cracks tend to generate along the weak grain boundaries. Young's modulus, estimated from unloading curve of both films, agrees well with the value (928 GPa) estimated by the laser ultrasonic method.Rockwell indentation test predicts that the adhesion of the NCD film is lower than that of the MCD, and compressive residual stress of the MCD is much larger than that of the NCD. We observed ring cracks and detected acoustic emission (AE) signals from the ring cracks.  相似文献   

4.
Nanocrystalline (NCD) and/or microcrystalline (MCD) diamond films grown on three-dimensional porous titanium (Ti) substrate were obtained by hot filament chemical vapor deposition (HFCVD) technique. The morphology variation of diamond films grown on porous three-dimensional titanium substrate was studied at four different deposition temperatures to investigate their influence on nucleation density. Scanning electron microscopy images depicted the continuous change from microcrystalline diamond grains with a random crystallographic orientation, at 500 °C and 600 °C, to a cauliflower-like structure for deposits at 700 °C and 800 °C. Visible Raman spectroscopy confirmed the good quality of diamond films and revealed that the amount of amorphous carbon increased associated to the film morphology changes from MCD to NCD. X-ray diffraction analyses, performed both through θ–2θ scans and at grazing incidence angle, allowed the investigation of the crystallographic properties and structural evolution of the different film/substrate interface phases, such as TiC(111), TiC(200) and TiH2. The results revealed that the temperature enhanced the nucleation sites for diamond growth.  相似文献   

5.
The adhesion strength and deposition behavior of diamond films with different grain size onto heat-treated WC–Co cutting tool inserts were investigated. The diamond film was deposited on WC–6%Co cutting tool inserts by the hot-filament chemical vapor deposition method, with H2/3% CH4 mixed gas. The N2 gas was incorporated in the mixed gas to refine the grain size of the deposited diamond film (nanocrystalline diamond: NCD).Pores were observed in the interface region between the micrometer-size diamond film (MCD) and the WC–Co cutting tool insert. This suggested that the growth of diamond grains on top of elongated WC grains, which was induced by heat treatment to improve the adhesion strength of the deposited film, hindered the deposition of diamond in the valley area between the elongated WC grains. By contrast, in the case of the NCD film with a grain size of less than 50 nm obtained by addition of N2 gas, no pores were observed, due to the fact that the refined diamond grains filled the interface region regardless of the existence of the elongated WC grains. The adhesion strength of the NCD film was likely to be greater than that of the MCD film on the heat-treated WC–Co cutting tool insert, which was explained by the full coverage with small diamond grains at the rough interface region.  相似文献   

6.
Well-faceted microcrystalline diamond (MCD) films were deposited along with nanocrystalline diamond (NCD) films on the same substrate by a microwave plasma in the gas mixture of 1% CH4+5% H2+94% Ar. This was achieved by forcing a microwave plasma ball generated at 170 torr gas pressure to touch a silicon substrate that was pre-seeded by nanocrystalline diamond powder resulting in a high concentration of atomic hydrogen on the surface of growing diamond. Previously reported compositional mapping of the argon–methane–hydrogen system for MCD and NCD growth was not valid in this process parameter space. The non-uniform concentrations of atomic hydrogen and carbon containing radicals such as C2 as well as varied local substrate temperature resulted in the simultaneous deposition of well-faceted MCD films in some areas with nanograined NCD films in others. Dilution of methane/hydrogen microwave plasmas by as much as 94% of argon alone could not suppress the growth of MCD.  相似文献   

7.
Three metallic films (Mo, Ti and W) were sputtered on Si substrates and ultrasonically seeded in diamond powder suspension. Nanocrystalline diamond (NCD) films were deposited using a dc arc plasma jet CVD system on the seeded metallic layers and, for comparison, a seeded Si without any metallic layer. The effect of metallic seed layers on the nucleation, microstructure, composition and mechanical properties of NCD films was investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and nanoindentation. We found that the metallic seed layers were transformed into metallic carbide or/and metallic silicide during the deposition of NCD films at high temperature. Adding metallic seed layers had no obvious effect on the bonding structure of the NCD films but significantly improved their surface roughness and mechanical properties. The NCD film deposited on W seed layer displays the lowest root-mean-square roughness of 19 nm while that on Ti seed layer has the highest compactness, hardness and elastic modulus.  相似文献   

8.
Growth processes of diamond thin films on the fused silica optical fibres (10 cm in length) were investigated at various temperatures. Fused silica pre-treatment by dip-coating in a dispersion consisting of detonation nanodiamond (DND) in dimethyl sulfoxide (DMSO) with polyvinyl alcohol (PVA) was applied. Nanocrystalline diamond (NCD) films were deposited on the fibres using the microwave plasma assisted chemical vapour deposition (MW PA CVD) method. The longitudinal variation of NCD morphology, structure and optical parameters were specifically investigated. The evolution of the film morphology and film thickness along the fibre length was studied using scanning electron microscopy (SEM). The chemical composition of the NCD film was examined with micro-Raman Spectroscopy. The sp3/sp2 band ratio was calculated using the Raman spectra deconvolution method. An approximately 5 cm-long homogeneous diamond film has been obtained on the surface of the fibre sample. Thickness, roughness and optical properties of NCD films in the VIS–NIR range were investigated on the reference quartz slides using spectroscopic ellipsometry. The samples exhibited relatively low deviations of refractive index (2.3 ± 0.25) and extinction coefficient (0.05 ± 0.02) along the length of 5 cm, as estimated at a wavelength of 550 nm. In order to show the effectiveness of deposition process on optical fibres, diamond films were also grown on the fibre with induced long-period grating (LPG). The results of transmission measurements demonstrated that an LPG with diamond overlay exhibits the appropriate dependency on the optical properties of external medium. Thus, the deposition process has a negligible effect on the fibre transmission properties.  相似文献   

9.
Nanodiamond or nanocrystalline diamond is a broad term used to describe a plethora of materials. It is generally accepted that nanocrystalline diamond (NCD) consists of facets less than 100 nm in size, whereas a second term “ultrananocrystalline diamond” (UNCD) has been coined to describe material with grain sizes less than 10 nm. These differences in morphology originate in the growth process. Conventional hydrogen rich gas phases produce facetted diamond with grain size proportional to film thickness and low sp2 content. If these films are thin the grains can be less than 100 nm and hence NCD. By starving the plasma of hydrogen, the reduction in etching of sp2 can lead to re-nucleation. At the extreme this results in very small grain sizes of around 3–5 nm, UNCD.The electronic properties of these two materials are vastly different. NCD is basically very thin microcrystalline diamond and thus can be doped with boron. It is intrinsically transparent, with absorption increasing with doping level. UNCD is highly absorbing due to its higher sp2 content, and exhibits a reduced bandgap due to disorder. By adding nitrogen to the gas phase, the density of states within the bandgap increases and ultimately metallic conductivity can be achieved. This conductivity is n-type but not doping.  相似文献   

10.
Chen-Hao Ku 《Carbon》2004,42(11):2201-2205
The effect of CCl4 concentration on the nanocrystalline diamond (NCD) films deposition has been investigated in a hot-filament chemical vapor deposition (HFCVD) reactor. NCD films with a thickness of few-hundred nanometers have been synthesized on Si substrates from 2.0% and 2.5% CCl4/H2 at a substrate temperature of 610 °C. Polycrystalline diamond films and nanowall-like films with higher formation rates than those of the NCD films were deposited from lower and higher CCl4 concentrations, respectively. The grain sizes of the diamond film grown using 2.0% CCl4 increased with film thickness while a diamond film with uniform nanocrystalline structure all over a thickness of 1 μm can be deposited in the case of 2.5% CCl4. We suggest that both the primary nucleation and the secondary nucleation processes are crucial for the growth of the NCD films on Si substrates.  相似文献   

11.
We discuss the complete functionalization of nitrogen-doped ultrananocrystalline diamond (UNCD) films, starting from an oxidized surface. First, the presence of hydroxyl groups on oxidized nanocrystalline diamond (NCD) was confirmed by fluorescence microscopy. Next, the grafting of a linker molecule such as 3-aminopropylmethyldiethoxysilane on oxidized NCD was confirmed by fluorescence microscopy and X-ray photoelectron spectroscopy (XPS). Then the horseradish peroxidase (HRP) enzyme was immobilized on silane-modified initially oxidized UNCD. The HRP-modified UNCD was characterized by electrochemical techniques, such as faradaic cyclic voltammetry and the amperometric response to H2O2. This response to H2O2 is discussed in terms of the layer-by-layer configuration used and the electronic properties of conducting UNCD.  相似文献   

12.
Highly transparent and hard nanocrystalline diamond (NCD) films were prepared on quartz glass by hot filament chemical vapor deposition (HFCVD). The effects of total gas pressure, substrate's temperature, and concentration of CH4 on the grain size, surface's roughness and hardness, growth rate, as well as the optical properties of NCD films were investigated. The results indicated that with a low total gas pressure and high CH4 concentration, high frequency of secondary nucleation can be obtained. In addition, low substrate temperature can increase the rate of the hydrogen atom etched sp2 graphite carbon in the film, yielding a smooth surface of NCD films and very high sp3 content. Under optimized conditions, the hardness can be enhanced up to 65 Gpa, with 80% maximum transmittance in the visible light region. The aforementioned reaction platform outcomes a 1.2 μm thickness of NCD coating with a low root-mean-square (r.m.s.) surface roughness around 12–13 nm and a high growth rate around 1 μm/h. The influences of the total gas pressure, substrate's temperature, and CH4 concentration for growing NCD films were also discussed in this paper.  相似文献   

13.
In the present study, we have compared the effects of ultrananocrystalline diamond/amorphous carbon composite films (UNCD/a-C) and nanocrystalline diamond (NCD) containing hydrogels to support the osteogenesis of endothelial progenitor cells (EPCs). The course of EPCs osteogenic differentiation was followed 21 days and assayed by measuring cell-associated alkaline phosphatase activity, calcium deposition, and expression of fibronectin. We found that EPCs were capable to adhere to both surfaces in flattened and elongated morphology. The attachment and spreading on the UNCD/a-C films were faster as compared to the hydrogels containing NCDs (by day 7), and this was connected with the release and adsorption of fibronectin to the surfaces. During the process of EPCs differentiation, the release of fibronectin was favored by hydrogels + NCD (day 21). The formation of calcium nodules, characteristic of osteoblastic mineralization, was detected by Alizarin Red S staining. Differentiation-induced calcium nodules were detected in EPCs growing on both surfaces. The EPCs cultured on hydrogels containing NCD deposited more extracellular calcium in comparison with those on UNCD/a-C films on day 21. These results were consistent with the data about the alkaline phosphatase activity on the same day and verified that an active EPC transformation to osteoblast phenotype occurred on both substrates. Our results could have direct implications in the use of biomaterials in tissue engineering strategies, and this work might be useful for the improvement of the methodologies for substrate preparation (including scaffolds). Thus both surfaces studied could be used for modification of bone implants (bone-anchoring parts of joint prostheses or bone replacements) in order to improve their integration with the surrounding bone tissue, for which improved cell-substrate adhesion is also needed.  相似文献   

14.
通过微波等离子体化学气相沉积技术(MWPCVD),以富勒烯(C60)甲苯饱和溶液为碳源,用载气携带的方式通入反应腔中生长金刚石膜。Raman光谱、SEM和AFM表征结果表明得到的超纳米晶金刚石薄膜相组成纯度较高,其平均晶粒尺寸约为15 nm,表面粗糙度为16.56 nm,薄膜平均生长速率约为0.6μm/h。此方法较其他以C60为碳源生长超纳米晶金刚石薄膜的方法更为简便,且容易控制富勒烯碳源的浓度,沉积速率更高,是一种新型的制备超纳米晶金刚石薄膜的可控工艺方法。  相似文献   

15.
Interfacial adhesion characteristics of nanocrystalline and microcrystalline diamond coatings deposited on tungsten carbide (WC–Co) substrates were studied and analysed using a scratch tester. Coating failure events and critical point loads were identified by acoustic emission, tangential force measurement and image analysis carried out on the scratch track. In this respect, enhanced scratch resistance properties were observed in microcrystalline diamond (MCD) coating in comparison to nanocrystalline diamond (NCD) coating. Significant difference in critical loads for adhesive failure was observed for MCD and NCD coatings. These loads were 42 N and 20 N for MCD and NCD coatings, respectively. The reason for these two distinctly different adhesive characteristics was attributed to the microstructure of the respective coatings. The surface morphologies at critical failure point and wedge spallation regions of the scratch tracks were completely different for NCD and MCD coatings. Critical point regions were analysed by Raman stress mapping to study the scratch induced residual stresses in the strained diamond flakes and deformed coating of the scratch track. In this respect, high tensile stresses were observed in the regions of critical failure. This behaviour is strongly dependent on magnitude of stress and nature of deformation during the scratch test of NCD and MCD coatings.  相似文献   

16.
CVD金刚石薄膜技术发展现状及展望(下)   总被引:1,自引:0,他引:1  
简要描述了CVD金刚石薄膜技术的发展历程。介绍了纳米特别是超纳米金刚石膜、CVD金刚石大单晶的技术特点及其应用。超纳米金刚石膜在MEMS(微机电系统)、电化学和生物医学上的应用和CVD金刚石大单晶是当前的研究热点。简言之,金刚石的发展向着更大或者更小的方向深入进行,即"非大即小"。  相似文献   

17.
This paper describes a new low-temperature process underlying the synthesis of highly transparent ultrananocrystalline diamond [UNCD] films by low-pressure and unheated microwave plasma jet-enhanced chemical vapor deposition with Ar-1%CH4-10%H2 gas chemistry. The unique low-pressure/low-temperature [LPLT] plasma jet-enhanced growth even with added H2 and unheated substrates yields UNCD films similar to those prepared by plasma-enhanced growth without addition of H2 and heating procedure. This is due to the focused plasma jet which effectively compensated for the sluggish kinetics associated with LPLT growth. The effects of pressure on UNCD film synthesis from the microwave plasma jet were systematically investigated. The results indicated that the substrate temperature, grain size, surface roughness, and sp 3 carbon content in the films decreased with decreasing pressure. The reason is due to the great reduction of H α emission to lower the etching of sp 2 carbon phase, resulting from the increase of mean free path with decreasing pressure. We have demonstrated that the transition from nanocrystalline (80 nm) to ultrananocrystalline (3 to 5 nm) diamond films grown via microwave Ar-1%CH4-10%H2 plasma jets could be controlled by changing the pressure from 100 to 30 Torr. The 250-nm-thick UNCD film was synthesized on glass substrates (glass transition temperature [T g] 557°C) using the unique LPLT (30 Torr/460°C) microwave plasma jet, which produced UNCD films with a high sp 3 carbon content (95.65%) and offered high optical transmittance (approximately 86% at 700 nm).  相似文献   

18.
Undoped diamond has conductive properties when terminated by hydrogen and exposed to air or aqueous solution. Here, it is shown that nanocrystalline diamond, fabricated with hydrogen termination and deposited on quartz substrates using chemical vapor deposition, significantly quenched the fluorescence of adsorbed, dye-labeled fibrinogen protein in aqueous solutions at near neutral pH. Smaller levels of quenching were observed from oxygen terminated NCD surfaces. We suggest that these near-surface fluorescence quenching effects may arise from surface conductance effects in hydrogen terminated NCD. It is also shown that despite bulk quenching effects, single molecules of fibrinogen could be imaged on nanocrystalline diamond surfaces using epi-fluorescence techniques.  相似文献   

19.
Our previous studies on AlN microstructures have shown that smooth amorphous films (a-AlN) can be grown on negatively biased Si substrates by the versatile physical vapour deposition technique under reactive magnetron sputtering. These a-AlN films are produced by energetic Ar ion bombardment under negative bias whereas those grown without bias were columnar crystallized ones (c-AlN). Here, we show first that depositing an a-AlN layer on c-AlN/Si structures by switching a suitable bias to the Si substrate can efficiently reduce their surface roughness. We then extend this smoothening method to a c-AlN/Poly-crystallized diamond (PCD) structure to reduce its high surface roughness that hampers using such structures in SAW device design. In fact, the piezoelectric c-AlN surfaces grown on rough diamond surfaces are equally rough. Effectively, the a-AlN layer deposited on the c-AlN/PCD structure brings down the latter's RMS surface roughness to one tenth of its initial RMS roughness, as confirmed here by TEM and AFM observations. The insulating property of the diamond as biased substrate doesn't impede the growth of this a-AlN layer. This smoothening method is without process interruption, where simply a negative bias is switched on to the diamond substrate once the desired piezoelectric c-AlN film thickness as monitored here by in-situ reflectometry, is attained. This as-grown smoothening method can be therefore easily and rapidly implemented and can thus replace time-consuming and costly PCD ionic and/or mechanical polishing. Hopefully, the method can be advantageously applied to c-AlN/nano-crystallized diamond structures (NCD) where the NCD films are not prepared under rigorous conditions meant to minimize their surface roughness.  相似文献   

20.
Field emission characteristics of ultra-nanocrystalline diamond (UNCD) have recently caught much attraction due to its importance in technological applications. In this work, we have fabricated lateral-field emitters comprised of UNCD films, which were deposited in CH4/Ar medium by microwave plasma-enhanced chemical vapor deposition method. The substrates, silicon-on-insulator (SOI) or SiO2-coated silicon, were pre-treated by mixed-powders-ultrasonication process for forming diamond nuclei to facilitate the synthesis of UNCD films on these substrates. Lateral electron field emitters can thus be fabricated either on silicon-on-insulator (SOI) or silicon substrates. The lateral emitters thus obtained possess large field enhancement factor (β = 1500–1721) and exhibit good electron field emission properties, regardless of the substrate materials used. The electron field emission can be turned on at 5.25–5.50 V/μm, attaining 5500–6000 mA/mm2 at 12.5 V/μm (100 V applied voltage).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号