首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comprehensive study of high efficiency In0.46Ga0.54N/Si tandem solar cell is presented. A tunnel junction (TJ) was needed to interconnect the top and bottom sub-cells. Two TJ designs, integrated within this tandem: GaAs(n+)/GaAs(p+) and In0.5Ga0.5N(n+)/Si(p+) were considered. Simulations of GaAs(n+)/GaAs(p+) and In0.5Ga0.5N (n+)/Si(p+) TJ I-V characteristics were studied for integration into the proposed tandem solar cell. A comparison of the simulated solar cell I-V characteristics under 1 sun AM1.5 spectrum was discussed in terms of short circuit current density (Jsc), open circuit voltage (VOC), fill factor (FF) and efficiency (η) for both tunnel junction designs. Using GaAs(n+)/GaAs(p+) tunnel junction, the obtained values of Jsc = 21.74 mA/cm2, VOC= 1.81 V, FF = 0.87 and η = 34.28%, whereas the solar cell with the In0.5Ga0.5N/Si tunnel junction reported values of Jsc = 21.92 mA/cm2, VOC = 1.81 V, FF = 0.88 and η = 35.01%. The results found that required thicknesses for GaAs(n+)/GaAs(p+) and In0.5Ga0.5N (n+)/Si(p+) tunnel junctions are around 20 nm, the total thickness of the top InGaN can be very small due to its high optical absorption coefficient and the use of a relatively thick bottom cell is necessary to increase the conversion efficiency.  相似文献   

2.
High-efficiency, ultralightweight, mechanically stacked 4-cm2 thin-film tandem solar cells are discussed. The tandem stack consists of a single-crystal, thin-film Ga(Al)As cell fabricated by the cleavage of lateral epitaxy for transfer (CLEFT) process and adhesively bonded to the top of a CdZnS/CuInSe2 polycrystalline thin-film cell deposited on glass. Maximum tandem efficiency in a four-terminal configuration of 21.6% AM0 have been demonstrated. This represents the highest thin-film cell efficiency reported to date. Individual subcells with efficiencies of 19.5% for CLEFT GaAs and 3.0% for CuInSe2 have also been achieved. Cell specific power as high as 600 W/kg has been achieved with a 4-cm2 cell weight of 188 mg without coverglass, at an efficiency of 20.8% AM0  相似文献   

3.
Given the rapid progress in perovskite solar cells in recent years, perovskite/silicon (Si) tandem structure has been proposed to be a potentially cost‐effective improvement on Si solar cells because of its higher efficiency at a minimal additional cost. As part of the evaluation, it is important to conduct a life cycle assessment on such technology in order to guide research efforts towards cell designs with minimum environmental impacts. Here, we carry out a life cycle assessment to assess global warming, human toxicity, freshwater eutrophication and ecotoxicity and abiotic depletion potential impacts and energy payback time associated with three perovskite/Si tandem cell structures using silver (Ag), gold (Au) and aluminium (Al) as top electrodes compared with p–n junction and hetero‐junction with intrinsic inverted layer Si solar cells. It was found that the replacement of the metal electrode with indium tin oxide/metal grid in the tandem cell reduces the environmental impacts significantly compared with the perovskite cell. For all the impacts assessed, we conclude that the perovskite/Si tandem using Al as top electrode has better environmental outcomes, including energy payback time, when compared with the other tandem structures studied. Use of Al in preference to noble metals for contacts, Si p–n junction in preference to intrinsic inverted layer and the avoidance of 2,20,7,70‐tetrakis(N ,N‐di‐p‐methoxyphenylamine)9,90‐spirobifluorene (Spiro‐OMeTAD) are environmentally beneficial. The key result found of this work is that the most important factor for the better environmental impacts of these tandem solar cells is the transparency and electrical conductivity of the perovskite layer after it fails. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents an understanding of the fundamental carrier transport mechanism in hydrogenated amorphous silicon (a‐Si:H)‐based n/p junctions. These n/p junctions are, then, used as tunneling and recombination junctions (TRJ) in tandem solar cells, which were constructed by stacking the a‐Si:H‐based solar cell on the heterojunction with intrinsic thin layer (HIT) cell. First, the effect of activation energy (Ea) and Urbach parameter (Eu) of n‐type hydrogenated amorphous silicon (a‐Si:H(n)) on current transport in an a‐Si:H‐based n/p TRJ has been investigated. The photoluminescence spectra and temperature‐dependent current–voltage characteristics in dark condition indicates that the tunneling is the dominant carrier transport mechanism in our a‐Si:H‐based n/p‐type TRJ. The fabrication of a tandem cell structure consists of an a‐Si:H‐based top cell and an HIT‐type bottom cell with the a‐Si:H‐based n/p junction developed as a TRJ in between. The development of a‐Si:H‐based n/p junction as a TRJ leads to an improved a‐Si:H/HIT‐type tandem cell with a better open circuit voltage (Voc), fill factor (FF), and efficiency. The improvements in the cell performance was attributed to the wider band‐tail states in the a‐Si:H(n) layer that helps to an enhanced tunneling and recombination process in the TRJ. The best photovoltage parameters of the tandem cell were found to be Voc = 1430 mV, short circuit current density = 10.51 mA/cm2, FF = 0.65, and efficiency = 9.75%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
CuGaSe2 (CGS) thin films were prepared on tin‐doped indium oxide (ITO) coated soda‐lime glass substrates by thermal co‐evaporation to fabricate transparent solar cells. The films consisted of columnar grains with a diameter of approximately 1 μm. Some deterioration of the transparency of the ITO was observed after deposition of the CGS film. The CGS solar cells were electrically connected in series with Cu(In,Ga)Se2 (CIGS) solar cells and mechanically stacked on the CIGS cells to construct tandem cells. The tandem solar cell with the CGS cell as the top cell showed an efficiency of 7.4% and an open‐circuit voltage of 1.18 V (AM 1.5, total area). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Saxena  R.R. Moon  R.L. 《Electronics letters》1979,15(25):826-827
The possibility of using In0.18Ga0.82As p-n junctions as a low-bandgap (1.15 eV) solar cell has been investigated. With a lattice-matched p+ In0.6Ga0.4P window layer, internal collection efficiency close to 100% has been demonstrated.  相似文献   

7.
根据电流连续性原则和光伏材料选择原则,对叠层电池的电流匹配进行了研究,结果表明,电流匹配是影响叠层电池短路电流和转换效率的重要因素之一,电流匹配可以通过调整单元电池厚度来实现,在此基础上,获得了面积为400cm^2,转移效率分别为8.28%,7.52%和6.74%的a-Si/a-Si,a-Si/a-SiGe和a-Si/A-Si/a-SiGe高效率叠层电池。  相似文献   

8.
Our unique, high‐efficiency c‐Si solar cell, named the HIT cell, has shown considerable potential to improve junction properties and surface passivation since it was first developed. The improved properties in efficiency and temperature dependence compared to conventional p – n diffused c‐Si solar cells are featured in HIT power 21TM solar cell modules and other applications which are now on the market. In the area of research, further improvement in the junction properties of the a‐Si/c‐Si heterojunction has been examined, and the highest efficiency to date of 20.1% has recently been achieved for a cell size of 101 cm2. The high open circuit voltage exceeding 700 mV, due to the excellent surface passivation of the HIT structure, is responsible for this efficiency. In this paper, recent progress in HIT cells by Sanyo will be introduced. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
Single junction Si solar cells dominate photovoltaics but are close to their efficiency limits. This paper presents ideal limiting efficiencies for tandem and triple junction multijunction solar cells featuring a Si subcell also serving as substrate. Subject to this Si bandgap constraint, we design optimum cell structures that we show depart from the unconstrained ideal. In order to progress to manufacturable designs, the use of III–V materials is considered, using a novel growth method capable of yielding low defect density III–V layers on Si. In order to evaluate the real potential of these proposed multijunction designs, a quantitative model is presented, the strength of which is the joint modelling of external quantum efficiency and current–voltage characteristics using the same parameters. The method yields a single‐parameter fit in terms of the Shockley–Read–Hall lifetime. This model is validated by fitting experimental data of external quantum efficiency, dark current and conversion efficiency of world record tandem and triple junction cells under terrestrial solar spectra without concentration. We apply this quantitative model to the design of tandem and triple junction solar cells, yielding cell designs capable of reaching efficiencies without concentration of 32% for the best tandem cell and 36% for the best triple junction cell. This demonstrates that efficiencies within a few per cent of world records are realistically achievable without the use of concentrating optics, with growth methods being developed for multijunction cells combining III–V and Si materials. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
通过应用 Scharfetter- Gummel解法数值求解 Poisson方程 ,对经高强度光辐照过的a- Si/ μc- Si叠层太阳能电池进行计算机数值模拟分析。结果表明 ,光生空穴俘获造成的 a- Si∶H(与μc- Si∶ H)中正空间电荷密度增加改变了电池内部的电场分布 ,普遍抬高 a- Si∶ H薄膜中电场强度。在光照射下 ,空间电荷效应不会给 a- Si/μc- Si叠层结构中的 a- Si∶ H薄膜带来准中性区 (低场“死层”) ,因而没有发生 a- Si/μc- Si叠层太阳能电池顶电池 (a- Si∶ H p- i- n)的光诱导性能衰退。a- Si/μc- Si叠层结构太阳能电池具有较高的光稳定性。  相似文献   

11.
Multijunction/tandem solar cells have naturally attracted great attention because they are not subject to the Shockley–Queisser limit. Perovskite solar cells are ideal candidates for the top cell in multijunction/tandem devices due to the high power conversion efficiency (PCE) and relatively low voltage loss. Herein, sandwiched gold nanomesh between MoO3 layers is designed as a transparent electrode. The large surface tension of MoO3 effectively improves wettability for gold, resulting in Frank–van der Merwe growth to produce an ultrathin gold nanomesh layer, which guarantees not only excellent conductivity but also great optical transparency, which is particularly important for a multijunction/tandem solar cell. The top MoO3 layer reduces the reflection at the gold layer to further increase light transmission. As a result, the semitransparent perovskite cell shows an 18.3% efficiency, the highest reported for this type of device. When the semitransparent perovskite device is mechanically stacked with a heterojunction silicon solar cell of 23.3% PCE, it yields a combined efficiency of 27.0%, higher than those of both the sub‐cells. This breakthrough in elevating the efficiency of semitransparent and multijunction/tandem devices can help to break the Shockley–Queisser limit.  相似文献   

12.
Ultrathin bilayer heterojunction solar cells using cyanine electron donors and electron acceptor C60 are used to fabricate monolithically stacked tandem and triple junction devices. Sub-cell stack sequences as well as C60 layer thicknesses are optimized by optical modeling and maximum efficiency is corroborated experimentally. The highest power conversion efficiency of 4.3% under full sun irradiation is achieved with a tandem cell where heptamethine and trimethine cyanine dyes are used in the front and back cell, respectively. The open circuit voltage matches the sum of the two respective open circuit voltages of the individual single junction solar cells within 3%. Triple junction cells using an additional sub-cell with a pentamethine cyanine suffer from electrical series resistance. At low light irradiation intensity, however, both triple and tandem solar cells reach power conversion efficiencies above 5% in agreement with the performance increase predicted from numerical simulation.  相似文献   

13.
A multipurpose interconnection layer based on poly(3,4‐ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS), and d ‐sorbitol for monolithic perovskite/silicon tandem solar cells is introduced. The interconnection of independently processed silicon and perovskite subcells is a simple add‐on lamination step, alleviating common fabrication complexities of tandem devices. It is demonstrated experimentally and theoretically that PEDOT:PSS is an ideal building block for manipulating the mechanical and electrical functionality of the charge recombination layer by controlling the microstructure on the nano‐ and mesoscale. It is elucidated that the optimal functionality of the recombination layer relies on a gradient in the d ‐sorbitol dopant distribution that modulates the orientation of PEDOT across the PEDOT:PSS film. Using this modified PEDOT:PSS composite, a monolithic two‐terminal perovskite/silicon tandem solar cell with a steady‐state efficiency of 21.0%, a fill factor of 80.4%, and negligible open circuit voltage losses compared to single‐junction devices is shown. The versatility of this approach is further validated by presenting a laminated two‐terminal monolithic perovskite/organic tandem solar cell with 11.7% power conversion efficiency. It is envisioned that this lamination concept can be applied for the pairing of multiple photovoltaic and other thin film technologies, creating a universal platform that facilitates mass production of tandem devices with high efficiency.  相似文献   

14.
Texturing of interfaces in thin film silicon solar cells is essential to enhance the produced photocurrent and thus the efficiencies. A UV nano‐imprint‐lithography (UV‐NIL) replication process was developed to prepare substrates with textures that are suitable for the growth of n‐i‐p thin film silicon solar cells. Morphological and optical analyses were performed to assess the quality of the replicas. A comparison of single junction amorphous solar cells on the original structures and on their replicas on glass revealed good light trapping and excellent electrical properties on the replicated structures. A tandem amorphous silicon/amorphous silicon (a‐Si/a‐Si) cell deposited on a replica on plastic exhibits a stabilized efficiency of 8.1% and a high yield of 90% of good cells in laboratory conditions. It demonstrates the possibility to obtain appropriate structure on low cost plastic substrate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Metal–insulator–semiconductor (MIS)-type solar cells have an inherent cost advantage compared to p-n junction solar cells. First-generation MIS–inversion layer (MIS–IL) solar cells, already successfully produced in an industrial pilot line, are restricted to efficiencies of 15–16%. With the second-generation MIS–IL silicon solar cells, based on drastically improved surface passivation by plasma-enhanced chemical vapour-deposited silicon nitride, simple technology can be combined with very high efficiencies. The novel inversion layer emitters have the potential to outperform conventional phosphorus-diffused emitters of Si solar cells. A 17.1% efficiency could already be achieved with the novel point-contacted ‘truncated pyramid’ MIS–IL cell. A new surface-grooved line-contact MIS–IL device presently under development using unconventional processing steps applicable for large-scale fabrication is discussed. By the mechanical grooving technique, contact widths down to 2 μm can be achieved homogeneously over large wafer areas. Bifacial sensitivity is included in most of the MIS-type solar cells. For a bifacial 98 cm2 Czochralski (Cz) Si MIS-contacted p-n junction solar cell with a random pyramid surface texture and Al as grid metal, efficiencies of 16.5% for front and 13.8% for rear side illumination are reported. A 19.5% efficiency has been obtained with a mechanically grooved MIS n+p solar cell. The MIS-type silicon solar cells are able to significantly lower the costs for solar electricity due to the simple technology and the potential for efficiencies well above 20%.©1997 John Wiley & Sons, Ltd.  相似文献   

16.
Mechanically stacked solar cells formed using adhesive bonding are proposed as a route to high‐efficiency devices as they enable the combination of a wide range of materials and bandgaps. The concept involves adhesive bonding of subcells using polymeric materials widely used in semiconductor processing and outlines how the absolute efficiency can be maximised by optimisation of the adhesive layer thickness and optical matching of the adhesive layer with both the subcells and their anti‐reflection coatings. A dual‐junction, GaAs‐InGaAs, mechanically stacked solar cell is demonstrated using a benzocyclobutene adhesive layer with a measured PV conversion efficiency of 25.2% under 1‐sun AM1.5G conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
This paper provides a review of the recent developments of self-organized In(Ga)As/Ga(Al)As quantum dot lasers grown directly on Si, as well as their on-chip integration with Si waveguides and quantum-well electroabsorption modulators. A novel dislocation reduction technique, with the incorporation of self-organized In(Ga,Al)As quantum dots as highly effective three-dimensional dislocation filters, has been developed to overcome issues associated with the material incompatibility between III-V materials and Si. With the use of this technique, quantum dot lasers grown directly on Si exhibit relatively low threshold current (J th=900 A/cm2) and very high temperature stability (T 0=278 K). Integrated quantum dot lasers and quantum-well electroabsorption modulators on Si have been achieved, with a coupling coefficient of more than 20% and a modulation depth of ~100% at a reverse bias of 5 V. The monolithic integration of quantum dot lasers with both amorphous and crystalline Si waveguides, fabricated using plasma-enhanced chemical-vapor deposition and membrane transfer, respectively, has also been demonstrated.  相似文献   

18.
Tandem solar cells (TSCs) comprising stacked narrow‐bandgap and wide‐bandgap subcells are regarded as the most promising approach to break the Shockley–Queisser limit of single‐junction solar cells. As the game‐changer in the photovoltaic community, organic–inorganic hybrid perovskites became the front‐runner candidate for mating with other efficient photovoltaic technologies in the tandem configuration for higher power conversion efficiency, by virtue of their tunable and complementary bandgaps, excellent photoelectric properties, and solution processability. In this review, a perspective that critically dilates the progress of perovskite material selection and device design for perovskite‐based TSCs, including perovskite/silicon, perovskite/copper indium gallium selenide, perovskite/perovskite, perovskite/CdTe, and perovskite/GaAs are presented. Besides, all‐inorganic perovskite CsPbI3 with high thermal stability is proposed as the top subcell in TSCs due to its suitable bandgap of ≈1.73 eV and rapidly increasing efficiency. To minimize the optical and electrical losses for high‐efficiency TSCs, the optimization of transparent electrodes, recombination layers, and the current‐matching principles are highlighted. Through big data analysis, wide‐bandgap perovskite solar cells with high open‐circuit voltage (Voc) are in dire need in further study. In the end, opportunities and challenges to realize the commercialization of TSCs, including long‐term stability, area upscaling, and mitigation of toxicity, are also envisioned.  相似文献   

19.
Recent research on light degradation of crystalline Si materials and solar cells is reviewed. The first paper on the issue was published in 1973 when efficiency of solar cells using 1 Ω cm, B‐doped CZ wafers degraded under illumination and recovered by annealing at a low temperature of around 200°C. In the 1990's, several studies have been performed to investigate the mechanism of the light degradation and also to provide practical solutions to suppress the degradation. Numerous experiments have been carried out regarding the effects of impurities including B, Ga, P, O and processing parameters such as oxidation temperature. To suppress the degradation, reducing the concentration of B and O or substituting boron by gallium as dopant was found to be effective. These findings are in agreement with a model attributing the lifetime degradation to oxygen and boron. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
Dual junction GaInP/GaAs solar cells have been grown and fabricated on Si substrates using relaxed, compositionally graded SiGe buffer layers that provide a nearly lattice-matched low threading dislocation Ge surface for subsequent cell growth. The dual junction cells on SiGe/Si displayed high open circuit voltages in excess of 2.2 V, compared to 2.34 V for control cells on GaAs, that are consistent with maintaining the 1.8/spl times/10/sup 6/ cm/sup -2/ threading dislocation density throughout the cell structure. Even with total current output limited by large grid coverage and high reflectance, total area AM1.5G efficiency is 16.8%, with active area efficiency at 18.6%. The high V/sub oc/ establishes that SiGe metamorphic buffers are viable for integrating III-V multijunction cells on Si in a monolithic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号