首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper addresses the problem of efficient representation of scenes captured by distributed omnidirectional vision sensors. We propose a novel geometric model to describe the correlation between different views of a 3-D scene. We first approximate the camera images by sparse expansions over a dictionary of geometric atoms. Since the most important visual features are likely to be equivalently dominant in images from multiple cameras, we model the correlation between corresponding features in different views by local geometric transforms. For the particular case of omnidirectional images, we define the multiview transforms between corresponding features based on shape and epipolar geometry constraints. We apply this geometric framework in the design of a distributed coding scheme with side information, which builds an efficient representation of the scene without communication between cameras. The Wyner-Ziv encoder partitions the dictionary into cosets of dissimilar atoms with respect to shape and position in the image. The joint decoder then determines pairwise correspondences between atoms in the reference image and atoms in the cosets of the Wyner-Ziv image in order to identify the most likely atoms to decode under epipolar geometry constraints. Experiments demonstrate that the proposed method leads to reliable estimation of the geometric transforms between views. In particular, the distributed coding scheme offers similar rate-distortion performance as joint encoding at low bit rate and outperforms methods based on independent decoding of the different images.  相似文献   

2.
This paper addresses the problem of correlation estimation in sets of compressed images. We consider a framework where the images are represented under the form of linear measurements due to low complexity sensing or security requirements. We assume that the images are correlated through the displacement of visual objects due to motion or viewpoint change and the correlation is effectively represented by optical flow or motion field models. The correlation is estimated in the compressed domain by jointly processing the linear measurements. We first show that the correlated images can be efficiently related using a linear operator. Using this linear relationship we then describe the dependencies between images in the compressed domain. We further cast a regularized optimization problem where the correlation is estimated in order to satisfy both data consistency and motion smoothness objectives with a Graph Cut algorithm. We analyze in detail the correlation estimation performance and quantify the penalty due to image compression. Extensive experiments in stereo and video imaging applications show that our novel solution stays competitive with methods that implement complex image reconstruction steps prior to correlation estimation. We finally use the estimated correlation in a novel joint image reconstruction scheme that is based on an optimization problem with sparsity priors on the reconstructed images. Additional experiments show that our correlation estimation algorithm leads to an effective reconstruction of pairs of images in distributed image coding schemes that outperform independent reconstruction algorithms by 2–4 dB.  相似文献   

3.
In a standard transform coding scheme of images or video, the decoder can be implemented by a table-lookup technique without the explicit use of an inverse transformation, In this new decoding method, each received code index of a transform coefficient addresses a particular codebook to fetch a component code vector that resembles the basis vector of the linear transformation. The output image is then reconstructed by summing a small number of nonzero component code vectors. With a set of well-designed codebooks, this new decoder can exploit the correlation among the quantized transform coefficients to achieve better rate-distortion performance than the conventional decoding method. An iterative algorithm for designing a set of locally optimal codebooks from a training set of images is presented. We demonstrate that this new idea can be applied to decode improved quality pictures from the bitstream generated from a standard encoding scheme of still images or video, while the complexity is low enough to justify practical implementation.  相似文献   

4.
In this paper, we consider the problem of lossy coding of correlated vector sources with uncoded side information available at the decoder. In particular, we consider lossy coding of vector source xisinRN which is correlated with vector source yisinRN, known at the decoder. We propose two compression schemes, namely, distributed adaptive compression (DAC) and distributed universal compression (DUC) schemes. The DAC algorithm is inspired by the optimal solution for Gaussian sources and requires computation of the conditional Karhunen-Loegraveve transform (CKLT) of the data at the encoder. The DUC algorithm, however, does not require knowledge of the CKLT at the encoder. The DUC algorithms are based on the approximation of the correlation model between the sources y and x through a linear model y=Hx+n in which H is a matrix and n is a random vector and independent of x. This model can be viewed as a fictitious communication channel with input x and output y. Utilizing channel equalization at the receiver, we convert the original vector source coding problem into a set of manageable scalar source coding problems. Furthermore, inspired by bit loading strategies employed in wireless communication systems, we propose for both compression schemes a rate allocation policy which minimizes the decoding error rate under a total rate constraint. Equalization and bit loading are paired with a quantization scheme for each vector source entry (a slightly simplified version of the so called DISCUS scheme). The merits of our work are as follows: 1) it provides a simple, yet optimized, implementation of Wyner-Ziv quantizers for correlated vector sources, by using the insight gained in the design of communication systems; 2) it provides encoding schemes that, with or without the knowledge of the correlation model at the encoder, enjoy distributed compression gains  相似文献   

5.
杨新锋  韩利华  粘永健 《红外与激光工程》2016,45(3):323003-0323003(7)
有效的星载超光谱图像压缩技术对于解决超光谱图像实时传输极为重要。针对超光谱图像传统的联合编解码算法的不足,提出了一种基于分布式信源编码(Distributed Source Coding,DSC)的超光谱图像无损压缩算法。为利用超光谱图像的局部空间相关性,将超光谱图像进行分块处理;引入多元线性回归模型构建编码块的边信息,并为每个编码块选取最优的预测阶数,以有效利用超光谱图像的局部谱间相关性。根据(n,k)线性分组码的原理,通过多元陪集码实现超光谱图像的分布式无损压缩。实验结果表明:该算法能够取得较好的无损压缩性能,同时具有较低的编码复杂度,适合星载超光谱图像的压缩实现。  相似文献   

6.
在无反馈分布式视频编码系统中,提出了一种Wyner-Ziv帧的顽健重构算法。针对比特面解码错误带来的视频质量下降问题,对DC系数和AC系数使用不同重构方法,特别是对于解码失败的DC系数量化值,利用编码端原始图像的相关信息自适应地调整边信息量化值和解码失败量化值对重构的贡献,从而完成重构。实验结果表明,与最小均方误差重构算法相比,该算法可以有效提高解码视频的平均PSNR(peak signal-to-noise ratio),且解码视频图像的主观质量有明显改善。  相似文献   

7.
基于相关编码的光纤拉曼温度传感系统的解码算法研究   总被引:1,自引:1,他引:0  
针对相关编码技术中传统解码运算的计算效率低和 存储空 间大的问题,利用重叠保留法对拉曼散射信号进行分段处理,并采用基于快速傅立叶变换(FFT)的循环相关代替各个分 段内的离散线性相关,最后将各段结果组合完成对系统的解码运算。在512bit Golay编码的20km光纤拉曼温度传感 仿真系统中,解码时间由传统移位相关算法的0.228s减少到了0.025s,提高了8倍以上的解码效率,解码过程中FFT运 算所需的存储空间由传统循环相关算法的 1280000bit减少到了65536bi t,减小了19倍以上的存储空间。上述结果表明,本文方法是一种实时有效的解码方法。  相似文献   

8.
Lossless compression of VQ index with search-order coding   总被引:1,自引:0,他引:1  
In memoryless vector quantization (VQ) for images, each block is quantized independently and its corresponding index is sent to the decoder. This paper presents a new lossless algorithm that exploits the interblock correlation in the index domain. We compare the current index with previous indices in a predefined search path, and then send the corresponding search order to the decoder. The new algorithm achieves significant reduction of bit rates without introducing extra coding distortion when compared to memoryless VQ. It is very simple and computationally efficient.  相似文献   

9.
We propose an optimization algorithm to solve the brachytherapy seed localization problem in prostate brachytherapy. Our algorithm is based on novel geometric approaches to exploit the special structure of the problem and relies on a number of key observations which help us formulate the optimization problem as a minimization integer program (IP). Our IP model precisely defines the feasibility polyhedron for this problem using a polynomial number of half-spaces; the solution to its corresponding linear program is rounded to yield an integral solution to our task of determining correspondences between seeds in multiple projection images. The algorithm is efficient in theory as well as in practice and performs well on simulation data (approximately 98% accuracy) and real X-ray images (approximately 95% accuracy). We present in detail the underlying ideas and an extensive set of performance evaluations based on our implementation.  相似文献   

10.
In this paper, we propose a new linear programming formulation for the decoding of general linear block codes. Different from the original formulation given by Feldman, the number of total variables to characterize a parity-check constraint in our formulation is less than twice the degree of the corresponding check node. The equivalence between our new formulation and the original formulation is proven. The new formulation facilitates to characterize the structure of linear block codes, and leads to new decoding algorithms. In particular, we show that any fundamental polytope is simply the intersection of a group of the so-called minimum polytopes, and this simplified formulation allows us to formulate the problem of calculating the minimum Hamming distance of any linear block code as a simple linear integer programming problem with much less auxiliary variables. We then propose a branch-and-bound method to compute a lower bound to the minimum distance of any linear code by solving a corresponding linear integer programming problem. In addition, we prove that, for the family of single parity-check (SPC) product codes, the fractional distance and the pseudodistance are both equal to the minimum distance. Finally, we propose an efficient algorithm for decoding SPC product codes with low complexity and maximum-likelihood (ML) decoding performance.   相似文献   

11.
We propose an adaptive distributed compression solution using particle filtering that tracks correlation, as well as performing disparity estimation, at the decoder side. The proposed algorithm is tested on the stereo solar images captured by the twin satellites system of NASA's Solar TErrestrial RElations Observatory (STEREO) project. Our experimental results show improved compression performance w.r.t. to a benchmark compression scheme, accurate correlation estimation by our proposed particle-based belief propagation algorithm, and significant peak signal-to-noise ratio improvement over traditional separate bit-plane decoding without dynamic correlation and disparity estimation.  相似文献   

12.
Three-dimensional encoding/two-dimensional decoding of medical data   总被引:3,自引:0,他引:3  
We propose a fully three-dimensional (3-D) wavelet-based coding system featuring 3-D encoding/two-dimensional (2-D) decoding functionalities. A fully 3-D transform is combined with context adaptive arithmetic coding; 2-D decoding is enabled by encoding every 2-D subband image independently. The system allows a finely graded up to lossless quality scalability on any 2-D image of the dataset. Fast access to 2-D images is obtained by decoding only the corresponding information thus avoiding the reconstruction of the entire volume. The performance has been evaluated on a set of volumetric data and compared to that provided by other 3-D as well as 2-D coding systems. Results show a substantial improvement in coding efficiency (up to 33%) on volumes featuring good correlation properties along the z axis. Even though we did not address the complexity issue, we expect a decoding time of the order of one second/image after optimization. In summary, the proposed 3-D/2-D multidimensional layered zero coding system provides the improvement in compression efficiency attainable with 3-D systems without sacrificing the effectiveness in accessing the single images characteristic of 2-D ones.  相似文献   

13.
A nonlinear model for fractal image coding   总被引:18,自引:0,他引:18  
After a very promising start, progress in fractal image coding has been relatively slow recently. Most improvements have been concentrating on better adaptive coding algorithms and on search strategies to reduce the encoding time. Very little has been-done to challenge the linear model of the fractal transformations used so far in practical applications. In this paper, we explain why effective nonlinear transformations are not easy to find and propose a model based on conformal mappings in the geometric domain that are a natural extension of the affine model. Our compression results show improvements over the linear model and support the hope that a deeper understanding of the notion of self-similarity would further advance fractal image coding.  相似文献   

14.
基于树结构矢量分类的小波图像图编码矢量量化   总被引:1,自引:0,他引:1  
郑勇  周正华  朱维乐 《通信学报》2001,22(9):108-114
本文基于零树编码,矢量分类和网络编码量化的思想,提出了对小波图象采用树结构矢量组合和分类后进行网络编码矢量量化的新方法,该方法充分利用了带系统的带间和带内的相关性,分类信息上中用比特数少,对重要类矢量实行加权网络编码矢量量化,利用卷积编码扩展信号空间以增大量化信号间的欧氏距离,用维特比算法搜索最优量化序列,并采用基于人眼视觉性特性的加权均方误差准则作为失真度量和码字匹配,提高了量化增益,仿真结果表明,该方法编码计算复杂度适中,解码简单,可达到很好的压缩效果。  相似文献   

15.
In this paper, we propose a scheme for distributed source coding of correlated sources using a single systematic LDPC code. In particular, since we are interested in wireless sensor network applications, we consider LDPC codes with short to moderate lengths that achieve every arbitrary coding rate on the Slepian-Wolf rate region. We simplify the distributed source coding problem to the rate-compatible LDPC code design with an unequal error protection property. The decoders communicate to each other to exchange information bits prior to decoding. However, thereafter, each performs the decoding independently. Therefore, errors in one decoder do not affect the other one. The simulation results confirm that the gap from the theoretical limit remains almost the same for different rates on the Slepian-Wolf rate region. First, we consider two correlated sources. We show that our proposed scheme improves the performance of distributed source coding of two sources considerably. This benefit is more stressed for application with short to moderate length sequences. Then, we study distributed source coding of three sources. As a special case, we investigate three sources that are pairwise correlated with the same correlation probability. We show that the gap from the theoretical limit is smaller than that of previous work. We also investigate the distributed source coding of correlated sources when there is no prior knowledge of the correlation parameter at the time of code design. We note that although the proposed distributed source coding is well suited for sensor networks (where sequences with less than 10000 bits are used), the method can be generalized to other distributed source coding applications.  相似文献   

16.
Nonlinear image representation for efficient perceptual coding.   总被引:1,自引:0,他引:1  
Image compression systems commonly operate by transforming the input signal into a new representation whose elements are independently quantized. The success of such a system depends on two properties of the representation. First, the coding rate is minimized only if the elements of the representation are statistically independent. Second, the perceived coding distortion is minimized only if the errors in a reconstructed image arising from quantization of the different elements of the representation are perceptually independent. We argue that linear transforms cannot achieve either of these goals and propose, instead, an adaptive nonlinear image representation in which each coefficient of a linear transform is divided by a weighted sum of coefficient amplitudes in a generalized neighborhood. We then show that the divisive operation greatly reduces both the statistical and the perceptual redundancy amongst representation elements. We develop an efficient method of inverting this transformation, and we demonstrate through simulations that the dual reduction in dependency can greatly improve the visual quality of compressed images.  相似文献   

17.
Typically, k-means clustering or sparse coding is used for codebook generation in the bag-of-visual words (BoW) model. Local features are then encoded by calculating their similarities with visual words. However, some useful information is lost during this process. To make use of this information, in this paper, we propose a novel image representation method by going one step beyond visual word ambiguity and consider the governing regions of visual words. For each visual application, the weights of local features are determined by the corresponding visual application classifiers. Each weighted local feature is then encoded not only by considering its similarities with visual words, but also by visual words’ governing regions. Besides, locality constraint is also imposed for efficient encoding. A weighted feature sign search algorithm is proposed to solve the problem. We conduct image classification experiments on several public datasets to demonstrate the effectiveness of the proposed method.  相似文献   

18.
3-D object recognition using 2-D views   总被引:1,自引:0,他引:1  
We consider the problem of recognizing 3-D objects from 2-D images using geometric models and assuming different viewing angles and positions. Our goal is to recognize and localize instances of specific objects (i.e., model-based) in a scene. This is in contrast to category-based object recognition methods where the goal is to search for instances of objects that belong to a certain visual category (e.g., faces or cars). The key contribution of our work is improving 3-D object recognition by integrating Algebraic Functions of Views (AFoVs), a powerful framework for predicting the geometric appearance of an object due to viewpoint changes, with indexing and learning. During training, we compute the space of views that groups of object features can produce under the assumption of 3-D linear transformations, by combining a small number of reference views that contain the object features using AFoVs. Unrealistic views (e.g., due to the assumption of 3-D linear transformations) are eliminated by imposing a pair of rigidity constraints based on knowledge of the transformation between the reference views of the object. To represent the space of views that an object can produce compactly while allowing efficient hypothesis generation during recognition, we propose combining indexing with learning in two stages. In the first stage, we sample the space of views of an object sparsely and represent information about the samples using indexing. In the second stage, we build probabilistic models of shape appearance by sampling the space of views of the object densely and learning the manifold formed by the samples. Learning employs the Expectation-Maximization (EM) algorithm and takes place in a "universal," lower-dimensional, space computed through Random Projection (RP). During recognition, we extract groups of point features from the scene and we use indexing to retrieve the most feasible model groups that might have produced them (i.e., hypothesis generation). The likelihood of each hypothesis is then computed using the probabilistic models of shape appearance. Only hypotheses ranked high enough are considered for further verification with the most likely hypotheses verified first. The proposed approach has been evaluated using both artificial and real data, illustrating promising performance. We also present preliminary results illustrating extensions of the AFoVs framework to predict the intensity appearance of an object. In this context, we have built a hybrid recognition framework that exploits geometric knowledge to hypothesize the location of an object in the scene and both geometrical and intesnity information to verify the hypotheses.  相似文献   

19.
针对传统BoF模型无法有效利用图像颜色及纹理来更好地表述果蔬特征的问题,文中提出了一种在BoF模型中进行多特征融合的果蔬图像分类算法。该算法首先提取并融合图像的颜色矩和SURF特征形成SURFC特征描述子;然后分别对CLBP及SURFC特征进行K-均值聚类以生成特征词典,并使用特征词典对所有特征量化编码;最后使用SVM对编码结果进行训练得到分类器并识别。实验结果表明,BoF模型融合颜色和纹理特征后,在果蔬图像分类效果上明显优于单一特征或者其他特征融合的BoF模型,识别率最高可达到94%,更适合果蔬图像分类。  相似文献   

20.
The use of sparse representations in signal and image processing is gradually increasing in the past several years. Obtaining an overcomplete dictionary from a set of signals allows us to represent them as a sparse linear combination of dictionary atoms. Pursuit algorithms are then used for signal decomposition. A recent work introduced the K-SVD algorithm, which is a novel method for training overcomplete dictionaries that lead to sparse signal representation. In this work we propose a new method for compressing facial images, based on the K-SVD algorithm. We train K-SVD dictionaries for predefined image patches, and compress each new image according to these dictionaries. The encoding is based on sparse coding of each image patch using the relevant trained dictionary, and the decoding is a simple reconstruction of the patches by linear combination of atoms. An essential pre-process stage for this method is an image alignment procedure, where several facial features are detected and geometrically warped into a canonical spatial location. We present this new method, analyze its results and compare it to several competing compression techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号