首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
铜锌硫直接优先浮选,采取低pH值选锌,锌浮选尾矿浓缩,在硫浮选循环使用硝酸铵、聚丙烯酰胺组合药剂,提高硫回收率7%,超过铜硫部分混合浮选硫回收率指标。  相似文献   

2.
广西某高硫铜矿石中滑石等易浮硅质矿物含量高,现场采用弱磁选-浮铜-浮硫工艺流程进行分选,除弱磁选能较好地回收磁黄铁矿外,黄铜矿浮选和黄铁矿浮选均因易浮硅质矿物的干扰而难以获得合格精矿。为此,在大量探索试验的基础上,采用弱磁选-黄铜矿和硅质矿物混合浮选-混浮精矿铜硅摇床分离-混浮尾矿浮黄铁矿的工艺流程处理该矿石,获得了磁选硫精矿硫品位和回收率分别为38.69%和64.48%,浮选硫精矿硫品位和回收率分别为44.57%和30.99%,铜精矿铜品位和回收率分别为13.87%和63.89%的良好试验指标,有效地综合回收了铜、硫矿物。  相似文献   

3.
康怀斌  肖国圣 《现代矿业》2023,(9):183-186+198
某选矿厂为了回收利用选铜、锌后尾矿中的铁、硫资源,实现伴生矿产资源的综合开发利用和有价组分的梯级回收,针对选锌尾矿中的磁黄铁矿在选锌过程中被大量石灰抑制可浮性变差的问题,通过在磁场强度175 kA/m的条件下进行弱磁选,弱磁选尾矿经1粗3精1扫浮选流程得到了硫精矿1;弱磁选精矿再磨至-0.038 mm87.50%后,经1粗3精3扫流程获得硫精矿2,两者合并获得了硫品位31.15%、硫回收率81.62%的最终硫精矿;将弱磁精矿浮选后尾矿再进行弱磁选,得到了铁品位64.87%、铁回收率35.09%、含硫4.19%的铁精矿,实现了铁、硫资源的综合回收。  相似文献   

4.
某铜铅锌多金属矿含铜0.10%、铅1.51%、锌2.91%。矿石中矿物种类较多,方铅矿与磁黄铁矿及非金属矿物钙铁辉石、钙铁榴石等关系密切,闪锌矿与黄铜矿、黄铁矿及磁黄铁矿的关系密切,因而较难获得合格的铅锌精矿产品。针对该矿石的特征,采用铜铅组合优先浮选—铜铅分离—铜铅浮选尾矿选锌—铅锌精矿磁选工艺流程,铜铅混合粗选使用水玻璃、石灰、硫酸锌和碳酸钠组合抑制剂,锌精选添加石灰和Ma强化磁黄铁矿抑制剂,分别获得较好的铜、铅、锌产品。实验室小型闭路试验结果为铜精矿含铜20.84%、铜回收率44.54%,铅精矿含铅60.18%、铅回收率88.54%,锌精矿含锌45.70%、锌回收率85.89%。  相似文献   

5.
某难选铅尾矿中含有锌和磁黄铁矿,矿物间共生关系密切,部分闪锌矿被磁黄铁矿包裹.针对矿石性质,进行了各药剂用量的条件试验和小型闭路试验,结果表明:采用锌硫部分混浮—粗精矿再磨再选—锌中矿磁选的工艺流程可以获得锌精矿品位为45.29%,回收率为82.49%:磁黄铁矿含硫38.13%,含铁55.33%,铁回收率78.31%的选别指标.  相似文献   

6.
某铜铅锌多金属硫化矿电位调控浮选试验研究   总被引:18,自引:5,他引:13  
某铜铅锌多金属硫化矿铜铅矿物嵌布粒度微细,分离难度大,锌矿物以铁闪锌矿为主,现场仅生产铅精矿和锌精矿且选别指标差。为此,针对矿石性质,采用铜铅混浮-铜铅分离-混浮尾矿抑硫浮锌电位调控浮选工艺,通过控制矿浆电位,混浮粗精矿再磨,选择高效捕收剂、活化剂、抑制剂等措施,使铜铅矿物与锌硫矿物、铜矿物与铅矿物、铁闪锌矿与磁黄铁矿得到了较好的分选。闭路试验获得含铜18.13%、铜回收率55.41%的铜精矿,含铅50.20%、铅回收率83.29%的铅精矿和含锌49.75%、锌回收率86.17%的锌精矿,与现场相比,不仅回收了铜矿物,而且铅、锌精矿质量与回收率都得到了大幅度提高。  相似文献   

7.
根据河南某高硫铜锌矿石的难选性质特点,分析了原矿矿物组成、有价组分种类、矿石结构构造及赋存状态,制定了选矿试验原则流程,并在此基础上进行了铜锌回收系统选矿试验研究,采用石灰抑制黄铁矿和磁黄铁矿,硫酸锌与亚硫酸钠组合使用抑制含锌矿物,乙基黄药作捕收剂优先选铜,对选铜尾矿采用选择性较好的捕收剂Z-200选锌,实现了铜锌分离。在开路试验基础上进行闭路试验,获得了铜品位22.07%、铜回收率86.28%的铜精矿和锌品位44.98%、锌回收率70.15%的锌精矿以及硫品位41.76%、硫回收率84.77%的硫精矿,实现了铜锌分离。  相似文献   

8.
杨云  赵冠飞  丁声强  刘松 《现代矿业》2012,(8):27-28,31
某选铜尾矿含硫较高,主要硫化物为磁黄铁矿、黄铁矿等,由于在选铜作业时可浮性受到抑制,因而重点对硫化矿物浮选的活化剂和捕收剂进行了条件试验,最终确定的1粗1精1扫、中矿顺序返回流程处理该含硫2.46%的选铜尾矿,可获得硫品位为35.04%、硫回收率为83.90%的硫精矿.  相似文献   

9.
新疆某高硫铜锌矿选矿试验   总被引:1,自引:0,他引:1  
针对新疆某高硫铜锌矿石的性质特点,采用铜锌混合浮选—混合粗精矿再磨—铜锌分离—铜锌混浮尾矿选硫的原则流程对该矿石进行了选矿试验研究。研究表明,铜锌混合浮选和铜锌混合粗精矿再磨适宜的磨矿产品细度分别为-0.074 mm占90%和-0.043 mm占95%;J102和丁基黄药为铜锌混合浮选的有效捕收剂;T-21与硫酸锌组合对闪锌矿具有较强的抑制作用;J102对铜矿物的选择性捕收可以较好地实现铜锌分离。采用试验确定的闭路流程处理该矿石,可获得铜品位为20.09%、铜回收率为86.46%的铜精矿,锌品位为52.48%、锌回收率为67.35%的锌精矿,硫品位为45.95%、硫回收率为74.09%的硫精矿。  相似文献   

10.
针对新疆某高硫铜锌矿石的性质特点,采用铜锌混合浮选-混合粗精矿再磨-铜锌分离-铜锌混浮尾矿选硫的原则流程对该矿石进行了选矿试验研究。研究表明,铜锌混合浮选和铜锌混合粗精矿再磨适宜的磨矿产品细度分别为-0.074 mm占90%和-0.043 mm占95%;J102和丁基黄药为铜锌混合浮选的有效捕收剂;T-21与硫酸锌组合对闪锌矿具有较强的抑制作用;J102对铜矿物的选择性捕收可以较好地实现铜锌分离。采用试验确定的闭路流程处理该矿石,可获得铜品位为20.09%、铜回收率为86.46%的铜精矿,锌品位为52.48%、锌回收率为67.35%的锌精矿,硫品位为45.95%、硫回收率为74.09%的硫精矿。  相似文献   

11.
“磁—浮—重”联合流程分选某锡石多金属硫化矿的研究   总被引:3,自引:0,他引:3  
某锡石多金属硫化矿含大量磁黄铁矿以及黄铜矿、铁闪锌矿、锡石和黝锡矿。试验采用阶段磨选工艺,磁选脱除磁黄铁矿,再优先浮铜—锌硫混浮—锌硫分离,摇床重选锡石,尾矿再磨再选。"磁选—浮选—重选"组合流程获得合格锡、铜、锌精矿和较好指标,推荐作为选矿厂设计改造和生产优化的依据。  相似文献   

12.
某高硫铜矿石磁黄铁矿和绿泥石等易泥化脉石矿物含量较高,且磁黄铁矿的可浮性和磁性差异较大,对铜硫分离浮选干扰很大。根据矿石性质,采用铜优先浮选—磁选回收磁黄铁矿—硫浮选工艺进行了选矿试验研究,即首先在较低碱度下采用铜选择性捕收剂组合(BK-306 TL-1)优先选铜;然后采用磁选回收磁性磁黄铁矿,再以高效硫活化剂BK546和组合捕收剂(丁基黄药 AT608)强化浮选回收硫矿物,实现了矿石中铜、硫的有效回收。闭路试验获得含铜24.81%、铜回收率86.31%的铜精矿,含硫37.83%、含铁58.21%、磁硫品位(Fe S)96.04%、硫回收率40.60%的磁黄铁硫精矿,以及含硫46.05%、硫回收率47.90%的硫精矿,硫总回收率为88.50%。  相似文献   

13.
铜硫钨多金属矿浮选尾矿水回用于铜硫浮选时,严重影响铜硫精矿的选矿指标.研究结果表明,钨浮选尾矿水经简单处理后回用,在铜浮选作业加入新型调整剂CW、在钨浮选作业加入对黄铁矿和磁黄铁矿捕收能力较弱的新型钨捕收剂TM,可获得铜精矿品位18.36%Cu、回收率76.67%的指标,其选别指标接近于用自来水的指标.  相似文献   

14.
针对某铜铅锌硫矿实际生产中存在的问题:铜浮选作业中有13.35%的铜损失在铜尾矿中;硫精矿含锌1.10%,杂质锌含量超标;锌精矿产品质量不合格(锌品位为18.38%),对铜浮选作业进行了多流程方案对比开路试验以及主要工艺条件的调整与优化,可获得铜精矿铜品位15.11%,铜回收率92.30%指标,较现场铜回收率提高了5.65%。采用抑锌浮硫工艺流程,可将现场硫精矿中锌品位由1.16%降至0.41%。对现场锌精矿采用不再磨、再磨工艺均显著提高了锌品位(锌品位最高可达48.71%),同时对该流程下浮选尾矿可作为单独的硫精矿产品进行回收。  相似文献   

15.
小型试验、半工业试验及工业生产实践表明:采用重浮联合流程可成功地从江西某铜矿尾矿中回收硫。该工艺流程简单;无需添加硫酸或其他活化剂即可实现黄铁矿的浮选;投资省、见效快;按日处理选铜尾矿1000t、入选硫品位2%、硫精矿品位40%、硫回收率58%计,年经济效益为62万元左右,在中小有色矿山具有普遍推广意义。  相似文献   

16.
某复杂高硫铜锌多金属矿富含多种有价金属元素, 铜、锌矿物以细粒嵌布为主, 黄铁矿主要以粗粒形态存在, 矿物间嵌布关系复杂。采用粗磨铜锌异步混选抛尾-粗精矿再磨铜锌分离选矿工艺, 获得了铜精矿品位22.56%、回收率87.55%, 锌精矿品位42.86%、回收率75.64%的指标, 粗磨混浮尾矿用摇床重选可选出合格硫精矿。  相似文献   

17.
铜陵有色某矿山为解决铜(含金银)、铁回收后的选硫精矿品质问题,在小型条件试验基础上进行了连选选硫试验。结果表明:①磁选尾矿中金属矿物主要为黄铁矿、磁黄铁矿,黄铁矿、磁黄铁矿的解离度均在90%左右,粒度主要分布在10~60μm;脉石矿物主要是石英,其次为方解石、石榴子石等。②磁黄铁矿可浮性比黄铁矿差,且与易浮脉石矿物可浮性相近,是造成浮选工艺很难获得高品质的硫精矿的原因。根据黄铁矿与磁黄铁矿可浮性差异,以及磁黄铁矿和脉石矿物磁性的差异,采用分步浮选、中矿强磁选、强磁选精矿浮选工艺连选,获得了含硫40.36%、含铁49. 25%,全硫+铁品位为89.61%,硫回收率为66.78%的总硫精矿,该精矿经烧酸之后,硫酸烧渣铁品位可达65%,大大提高了硫酸烧渣的附加值。③产品镜下分析表明,磁选尾矿中主要有用矿物为黄铁矿和磁黄铁矿;硫精矿1中金属矿物以黄铁矿为主;精选1尾矿和精选2尾矿中金属矿物主要是磁黄铁矿;硫精矿2中金属矿物以磁黄铁矿为主。这表明分步浮选、中矿强磁选、强磁选精矿浮选工艺是回收磁选尾矿中黄铁矿和磁黄铁矿的合理工艺。④本次连选试验的尾矿2(即强磁选尾矿)含硫较高,达14.53%,以非磁性磁黄铁矿为主,后续应开展该部分含硫矿物的回收研究。  相似文献   

18.
段志毅 《现代矿业》2009,25(9):42-44
针对云南某钼铜矿选矿厂存在钼品位回收率低,钼精矿含铜高的问题开展了试验研究。试验采用"钼铜混选,尾矿选硫,钼铜混合精矿再磨后钼铜分离"的原则工艺流程,以煤油和丁基黄药作为钼铜混选的混合捕收剂,以巯基乙酸钠为钼铜分离的抑制剂,钼铜混选尾矿用磁选方法回收磁黄铁矿,实现资源的综合回收利用。  相似文献   

19.
李辉跃 《矿冶工程》2017,37(6):66-70
对广东某低铜高硫含钨铜硫矿进行了选矿小型试验研究。采用磁选-浮选联合流程, 原矿磨矿至-0.074 mm粒级占75%后进行弱磁选, 弱磁尾矿选铜, 选铜尾矿再浮硫, 最终可获得硫品位37.10%、硫回收率38.11%、铁品位56.64%的磁性精矿, 铜品位18.81%、铜回收率88.38%的铜精矿和硫品位42.35%、硫回收率53.04%的硫精矿。  相似文献   

20.
对伏牛山高硫铜锌矿石进行工艺矿物学和选矿工艺研究,研究表明,采用优先选铜-锌硫混浮再分离及铜锌硫依次优先浮选工艺可较好地回收矿石中的铜锌硫,小型闭路试验可得到含铜27-28%、铜回收率86.3%的铜精矿,含锌50.53-51.83%、锌回收率88.11-90.38%的锌精矿,含硫42-43%、硫回收率78%的硫精矿。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号