首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
5-Methylcytosines have been introduced into triplex-forming-oligonucleotides and shown to extend the pH range over which a triplex forms with a homopurine-homopyrimidine tract of duplex DNA. As a host strand, an oligodeoxypyrimidine with a base sequence of 5'-d(TC)3T4(CT)3 ([CC]) was designed to form a hairpin triplex with a 5'-d-A(GA)2G ([AG6]) purine strand at acidic pH (Tsay, et al., (1995) J. Biomol. Str. Dyn., 13, 1235-1245). We here present results obtained by FT-IR spectroscopy concerning the conformation of the hairpin triplex as a function of the selective substitution of cytosines by 5-methylcytosines in the host strand. Namely, cytosines are substituted by 5-methylcytosines in either the 3'-pyrimidine portion ([CM]) or the 5'-pyrimidine portion ([MC]) or in both ([MM]) of the host strand. The acidic-induced transitions of the equimolar mixtures of the purine target with either of the four pyrimidine oligomers gives rise to different apparent pK values, i.e., [MM].[AG6] (6.2) > [MC].[AG6] (6.0) > [CM].[AG6] (5.7) > [CC].[AG6] (5.2) > single-stranded oligopyrimidines (4.6 +/- 0.2), indicating that cytosine methylation expands the pH range compatible with the hairpin triplex formation regardless of whether the substitution is in the 5'-pyrimidine (Hoogsteen) portion or in the 3'-pyrimidine (Watson-Crick) portion. Thermal denaturation profiles indicated that all the triplexes denatured in a monophasic manner in the pH range of 4.0 to 7.0, and that cytosine methylations in any position of the 16-base pyrimidine oligomer increase the stability of the hairpin triplex DNA. IR spectra recorded in D2O and H2O solutions revealed that cytosine methylation does not significantly influence the conformation of triplex DNA in solution, i.e., all the four triplexes accept a similar sugar conformation, and predominately take on a S-type sugar pucker with a relative proportion of two S-type sugars for one N-type. Furthermore, we also investigated the effect of relative humidity (RH) on the conformation of triplex MC.AG6 in hydrated films, and found that the conformational change induced by the decrease of RH, from predominant S-type to primary N-type sugar pucker, might first occur in the purine strand at 86% RH.  相似文献   

3.
BACKGROUND: Double-strand breaks in chromosomal DNA of eucaryotic cells are assumed to be repaired by mechanisms of illegitimate recombination capable of direct rejoining of the broken ends. Cell-free extracts of Xenopus laevis eggs efficiently perform these end joining reactions with any pair of noncomplementary DNA termini whose single-stranded 5'- or 3'-overhangs do not exceed a length of approximately 10 nt. RESULTS: Using hairpin-shaped oligonucleotides that allow the construction of double-strand break termini with 5'- or 3'-overhangs of defined length and sequence we show that 5'-overhangs of more than 9-10 nt are exonucleolytically resected in the extract to produce shorter 5'-overhangs that can be metabolized in the end joining reaction. 5'-recessed ends in double-stranded DNA with 3'-overhangs of more than 2nt as well as the 5'-ends of single-stranded DNA also serve as substrates for the exonuclease activity. In all cases, oligomers of about 10 nt are released from the 5'-ends. CONCLUSIONS: We describe here a novel 5'-exonuclease activity present in eggs from Xenopus laevis that reproducibly removes decameric oligonucleotides from 5'-ends of double- and single-stranded DNA. A possible function of this unusual activity is discussed in the context of homologous and illegitimate genetic recombination processes.  相似文献   

4.
5.
Modified oligodeoxyribonucleotides (ODNs) that have unique hybridization properties were designed and synthesized for the first time. These ODNs, called selective binding complementary ODNs (SBC ODNs), are unable to form stable hybrids with each other, yet are able to form stable, sequence specific hybrids with complementary unmodified strands of nucleic acid. To make SBC ODNs, deoxyguanosine (dG) and deoxycytidine (dC) were substituted with deoxyinosine (dI) and 3-(2'-deoxy-beta-D-ribofuranosyl)pyrrolo-[2,3-d]-pyrimidine-2-(3H)-one (dP), respectively. The hybridization properties of several otherwise identical complementary ODNs containing one or both of these nucleoside analogs were studied by both UV monitored thermal denaturation and non-denaturing PAGE. The data showed that while dI and dP did form base pairs with dC and dG, respectively, dI did not form a stable base pair with dP. A self-complementary ODN uniformly substituted with dI and dP acquired single-stranded character and was able to strand invade the end of a duplex DNA better than an unsubstituted ODN. This observation implies that SBC ODNs should effectively hybridize to hairpins present in single-stranded DNA or RNA.  相似文献   

6.
RNA pur*pur-pyr and pyr*pur-pyr (pur = purine, pyr = pyrimidine) triple helices consisting of a Watson-Crick base-paired 28mer hairpin duplex and a Hoogsteen base-paired purine or pyrimidine 12mer are targeted with photoactivated cleavage by the metal complex Rh(phen)2phi3+ (phen = phenanthroline, phi = 9, 10-phenanthrenequinone diimine). The metal complex interacts with these triple helices in a structure-specific manner. Different cleavage patterns are seen with the pyr*pur-pyr and pur*pur-pyr motifs. Cleavage is seen on both of the Watson-Crick strands of the former motif and primarily on the purine Watson-Crick strand of the latter motif. Little cleavage is seen on the Hoogsteen strand for either motif. Importantly, the metal complex shows no detectable cleavage on the A-form RNA duplex in the absence of the third Hoogsteen strand. The cleavage patterns are consistent with an intercalated model for the metal complex in the triple helix. Similar cleavage is seen on DNA triple helices, but over a background of duplex cleavage. Targeting of synthetic RNA triple helices, but not duplex regions, by Rh(phen)2phi3+ provides a basis for the chemical probing of triply bonded sites in folded RNA molecules.  相似文献   

7.
8.
BACKGROUND: The replication origin of the single-stranded (ss)DNA bacteriophage G4 has been proposed to fold into a hairpin loop containing the sequence GCGAAAGC. This sequence comprises a purine-rich motif (GAAA), which also occurs in conserved repetitive sequences of centromeric DNA. ssDNA analogues of these sequences often show exceptional stability which is associated with hairpin loops or unusual duplexes, and may be important in DNA replication and centromere function. Nuclear magnetic resonance (NMR) studies indicate that the GCGAAAGC sequence forms a hairpin loop in solution, while centromere-like repeats dimerise into unusual duplexes. The factors stabilising these unusual secondary structure elements in ssDNA, however, are poorly understood. RESULTS: The nonamer d(GCGAAAGCT) was crystallised as a bromocytosine derivative in the presence of cobalt hexammine. The crystal structure, solved by the multiple wavelength anomalous dispersion (MAD) method at the bromine K-edge, reveals an unexpected zipper-like motif in the middle of a standard B-DNA duplex. Four central adenines, flanked by two sheared G.A mismatches, are intercalated and stacked on top of each other without any interstrand Watson-Crick base pairing. The cobalt hexammine cation appears to participate only in crystal cohesion. CONCLUSIONS: The GAAA consensus sequence can dimerise into a stable zipper-like duplex as well as forming a hairpin loop. The arrangement closes the minor groove and exposes the intercalated, unpaired, adenines to the solvent and DNA-binding proteins. Such a motif, which can transform into a hairpin, should be considered as a structural option in modelling DNA and as a potential binding site, where it could have a role in DNA replication, nuclease resistance, ssDNA genome packaging and centromere function.  相似文献   

9.
The rate of unwinding of duplex DNA by the herpes simplex virus type 1 (HSV-1)-encoded helicase-primase (primosome) was determined by measuring the rate of appearance of single strands from a circular duplex DNA containing a 40-nucleotide 5' single-stranded tail, i.e. a preformed replication fork, in the presence of the HSV-1 single strand DNA-binding protein, infected cell protein 8 (ICP8). With this substrate, the rate at low ionic strength was highly sensitive to Mg2+ concentration. The Mg2+ dependence was a reflection of both the requirement for ICP8 for helicase activity and the ability of ICP8 to reverse the helicase reaction as a consequence of its capacity to anneal homologous single strands at Mg2+ concentrations in excess of 3 mM. The rate of unwinding of duplex DNA by the HSV-1 primosome was also determined indirectly by measuring the rate of leading strand synthesis with a preformed replication fork as template in the presence of the T7 DNA polymerase. The value of 60-65 base pairs unwound/s by both methods is consistent with the rate of 50 base pairs/s estimated for the rate of fork movement in vivo during replication of pseudorabies virus, another herpesvirus. Interaction with the helicase-primase did not increase its helicase activity.  相似文献   

10.
Parallel DNA triplexes considered to be putative intermediates in homologous recombination, are studied by means of theoretical conformational analysis. These triplexes are denoted as the R-form DNA. Two types of triplexes are analyzed: extended R-form DNA, modeling the triple standard structure, created transiently in the presence of recombination proteins (e.g. RecA); and collapsed R-form, obtained after deproteinization. These structures are stereochemically possible for any arbitrary sequence and have the following properties: (1) the third, R-strand, is parallel to the identical duplex strand and is located in the major groove of the duplex; (2) positions of all four bases in the R-strand are nearly isomorphic; (3) the proposed triplets are consistent with the chemical modification data for deproteinized DNA; we suggest, however, that they are the same in the RecA-DNA complex as well. Since the patterns of charges on each base of the R-strand are strictly complementary to the charges of the homologous Watson-Crick (WC) pair in the major groove, we propose that the selection of the homologous sequence may occur through these complementary electrostatic interactions (electrostatic recognition code). We demonstrate that in the collapsed triplex with a rise of about 3.4 A, the bases from the third R-strand can be inclined and interact with two WC base-pairs simultaneously, which could lead to recognition errors. These mispairings are unlikely in the extended triplex. Therefore, we speculate that a functional role of the extended and underwound DNA structure, transiently formed in the complex with RecA protein, is to obviate such errors and increase the stringency of recognition. In other words, RecA plays the role of a DNA chaperone facilitating the recognition of the single stranded DNA and the duplex. Finally, we show that the proposed isomorphic triplets are conformationally advantageous for strand exchange.  相似文献   

11.
A series of partially self-complementary peptide nucleic acid (PNA) oligomers was prepared. Examination of their melting behavior, circular dichroism spectra, and fluorescence properties reveals that these PNA oligomers exist as stem-loop ("hairpin") structures. Fluorescence is readily observed in hairpins containing a covalently linked, emissive acridine derivative which is, at least partially, intercalated in the duplex region of the PNA hairpin. The acridine fluorescence is quenched when an anthraquinone derivative is covalently attached to the PNA so that it is bound near the acridine in the hairpin structure. Acridine fluorescence is restored in hairpins containing both the anthraquinone and the acridine by increasing the temperature and melting the structure to its linear form or by opening the hairpin through formation of a hybrid duplex with complementary DNA. The latter process may form the basis for development of selective and sensitive DNA assays.  相似文献   

12.
The questions of whether different tautomeric forms of nucleic acid bases exist to any significant extent in DNA, or what their possible roles in mutation may be, are under intense scrutiny. 2'-Deoxyisoguanosine (iG) has been suggested to have a propensity to adopt the enol form. Isoguanine (also called 2-hydroxyadenine) can be found in oxidatively damaged DNA generated from treating DNA with a Fenton-type reactive oxygen-generating system and is known to cause mutation. We have analyzed the three-dimensional structure of the DNA dodecamer d(CGC[iG]AATTTGCG) (denoted iG-DODE) by X-ray crystallography and NMR. The crystal structure of the iG-DODE complexed with the minor groove binder Hoechst 33342, refined to 1.4 A resolution, showed that the two independent iG.T base pairs in the dodecamer duplex adopt different (one in Watson-Crick and the other in wobble) conformations. The high-resolution nature of the structure also affords unprecedented clear information about the conformation and interactions of the Hoechst drug. The Hoechst 33342 binds in the narrow minor groove at the iGAATT site, with the N-methylpiperazine ring near the iG4.T21 base pair. Three hydrogen bonds are found between the NH of the Hoechst ligand and T-O2 DNA atoms. In solution, the two iG.T base pairs in iG-DODE predominantly are in the wobble form at 2 degreesC. At higher temperatures, another duplex form (likely involving the enol form of iG) is in slow exchange with the keto form and becomes significantly populated, reaching approximately 40% at 40 degreesC. Our data support the conclusion that iG pairs with T in a Watson-Crick configuration to a significant extent at physiological temperature (37 degreesC), which may explain the facile incorporation rate of T across from an iG during in vitro DNA replication.  相似文献   

13.
The interaction of the 11-mer oligodeoxypyrimidine d(TCTTCTUTCCT) with the 17 bp duplex d(CGCTAGAAGAAAGGACG).d(CGTCCUTTCTTCTAGCG) in forming an intermolecular DNA triplex has been examined in solution by surface plasmon resonance (SPR), UV thermal denaturation, circular dichroism (CD), and NMR methods. Thermodynamic data were also acquired for the shorter 15 bp target duplex d(CGCTAGAAGAAAGGA). d(TCCUTTCTTCTAGCG), which forms a 3' flush-ended parallel triplex. CD titrations at pH 5 gave a triplex --> (duplex + strand) dissociation constant Kd of 0.5 microM at 15 degreesC and approximately 2 microM at 25 degreesC for both the 11-15.15 and 11-17.17 systems, in agreement with analysis of the UV melting data and a direct calorimetric measurement. In contrast, the "apparent" Kd value determined by SPR was 10-20-fold smaller. The rate constant for dissociation (kd) of the third strand from the triplex was found to be approximately 0.0002 s-1 at 25 degreesC by SPR. The rate constant for exchange between the triplex and duplex states determined by NMR was approximately 2 s-1 at 40 degreesC. The dissociation kinetics measured by SPR are considerably underestimated, which largely accounts for the poor estimation of Kd using this technique. Extensive 1H NMR assignments were obtained for both the 17 bp DNA duplex and the triplex. Large changes in chemical shifts were observed in the purine strand of the host duplex, but only small shift changes were induced in the complementary pyrimidine strand. Dramatic differences in shifts were observed for the G and A residues, especially in the minor groove, consistent with only small, localized conformational changes in the underlying duplex. The magnitude of the shift changes decreased to baseline within one base of the 3' triplex-duplex junction and over two to three bases at the 5' junction. Chemical shift changes at the 5' junction suggest small conformational anomalies at this site. COSY and NOESY spectra indicate that the nucleotides are in the "S" domain in both the triplex and duplex states. These data rule out major conformation changes at the triplex-duplex boundaries. NOEs between pyrimidines in the third strand and those in the duplex showed proximity for these bases in the major groove, which could be ascribed to buckling of the Hoogsteen bases out of the plane of the Watson-Crick base pairs.  相似文献   

14.
Bacteriophage T7 DNA helicase requires two noncomplementary single-stranded DNA (ssDNA) tails next to a double-stranded DNA (dsDNA) region to initiate DNA unwinding. The interactions of the helicase with the DNA were investigated using a series of forked DNAs. Our results show that the helicase interacts asymmetrically with the two tails of the forked DNA. When the helicase was preassembled on the forked DNA before the start of unwinding, a DNA with 15-nucleotide (nt) 3'-tail and 35-nt 5'-tail was unwound with optimal rates close to 60 base pairs/s at 18 degrees C. When the helicase was not preassembled on the DNA, a >65-nt long 5'-tail was required for maximal unwinding rates of 12 base pairs/s. We show that the helicase interacts specifically with the ssDNA region and maintains contact with both ssDNA strands during DNA unwinding, since conversion of the two ssDNA tails to dsDNA structures greatly inhibited unwinding, and the helicase was unable to unwind past a nick in the dsDNA region. These studies have provided new insights into the mechanism of DNA unwinding. We propose an exclusion model of DNA unwinding in which T7 helicase hexamer interacts mainly with the ssDNA strands during DNA unwinding, encircling the 5'-strand and excluding the 3'-strand from the hole.  相似文献   

15.
We have built computer models of triple helical structures with a third poly(dT) strand Hoogsteen base paired to the major groove of a poly(dA).poly(dT) Watson-Crick (WC) base-paired duplex in the canonical A-DNA as well as B-DNA. For the A-DNA form, the sugar-phosphate backbone of the third strand intertwines and clashes with the poly(dA) strand requiring a radical alteration of the duplex to access the hydrogen bonding sites in the major groove. In contrast, when the duplex was in the canonical B-DNA form, the third strand was readily accommodated in the major groove without perturbing the duplex. The triple helical model, with the duplex in the B-DNA form, was equilibrated for 400ps using molecular dynamics simulations including water molecules and counter-ions. During the entire simulations, the deoxyriboses of the adenine strand oscillate between the S-type and E-type conformations. However, 30% of the sugars of the thymine strands-II & III switch to the N-type conformation early in the simulations but return to the S-type conformation after 200ps. In the equilibrium structure, the WC duplex portion of the triplex is unique and its geometry differs from both the A- or B-DNA. the deoxyriboses of the three strands predominantly exhibit S-type conformation. Besides the sugar pucker, the major groove width and the base-tilt are analogous to B-DNA, while the X-displacement and helical twist resemble A-DNA, giving a unique structure to the triplex and the Watson & Crick and Hoogsteen duplexes.  相似文献   

16.
Improved thermodynamic parameters for prediction of RNA duplex formation are derived from optical melting studies of 90 oligoribonucleotide duplexes containing only Watson-Crick base pairs. To test end or base composition effects, new sets of duplexes are included that have identical nearest neighbors, but different base compositions and therefore different ends. Duplexes with terminal GC pairs are more stable than duplexes with the same nearest neighbors but terminal AU pairs. Penalizing terminal AU base pairs by 0.45 kcal/mol relative to terminal GC base pairs significantly improves predictions of DeltaG degrees37 from a nearest-neighbor model. A physical model is suggested in which the differential treatment of AU and GC ends accounts for the dependence of the total number of Watson-Crick hydrogen bonds on the base composition of a duplex. On average, the new parameters predict DeltaG degrees37, DeltaH degrees, DeltaS degrees, and TM within 3.2%, 6.0%, 6.8%, and 1.3 degreesC, respectively. These predictions are within the limit of the model, based on experimental results for duplexes predicted to have identical thermodynamic parameters.  相似文献   

17.
To investigate the effect of chemical modification of the third strand on the stability of triplex DNA, we have examined the thermodynamic properties of the triplex formation between a 23-mer double-stranded homopurine-homopyrimidine and each of five kinds of 15-mer chemically modified single-stranded homopyrimidines by isothermal titration calorimetry, and the kinetic properties by interaction analysis system. The modifications of the third strand included two base modifications, two sugar moiety modifications, and one phosphate backbone modification. The thermodynamic and kinetic parameters for the triplex formation were similar in magnitude among the two base-modified and two sugar-modified single strands. By contrast, the binding constant for the triplex formation with the single strand with phosphorothioate backbone was more than ten times as small as that for the other triplex formation. On the basis of the kinetic analyses, the single strand with phosphorothioate backbone was more difficult to associate with and easier to dissociate from the target double strand than the other single strands, which resulted in the much smaller binding constant.  相似文献   

18.
The triple helix formation by the oligonucleotide 5'd(G4T4G4-[T4]-G4A4G4-[T4]-C4T4C4) ([T4] represents a stretch of 4 thymine residues) has been investigated by UV absorption spectroscopy and circular dichroism. In a 10 mM sodium cacodylate, 0.2 mM disodium EDTA (pH 7) buffer, we show the following significant results: i) In the absence of MgCl2, the oligonucleotide adopts a hairpin duplex structure with the dangling tail 5'd(G4T4G4-[T4]). This 5' extremity, which contains separated runs of four guanine residues, does not assume the expected tetraplex conformation observed when this sequence is free. ii) In the presence of MgCl2, the oligonucleotide folds back on itself twice to give a triple helix via a double hairpin formation, with [T4] single-strand loops. iii) The addition of high concentration of KCl to the preformed triplex does not disrupt the structure. Nevertheless, if the oligonucleotide is allowed to fold back in the presence of K+, triplex formation is inhibited. Circular dichroism studies demonstrate that the oligonucleotide adopts a dimeric conformation, resulting from the association of two hairpin duplexes, via the formation of an antiparallel G-quadruplex by the telomeric 5'd(G4T4G4-[T4]) extremities. iv) Under the experimental conditions used in this report, the triplex melts in a monophasic manner. v) Netropsin, a DNA minor groove ligand, binds to the central site A4/T4 of the duplex and to that of the triplex in an equimolar stoichiometry. In contrast with previous studies concerning pyr.pur:pyr triplexes, thermal denaturation experiments demonstrate that the netropsin binding stabilizes the intramolecular triplex.  相似文献   

19.
Effective sequence-specific recognition of duplex DNA is possible by triplex formation with natural oligonucleotides via Hoogsteen H-bonding. However, triplex formation is in practice limited to pyrimidine oligonucleotides binding duplex A-T or G-C base-pair DNA sequences specifically at homopurine sites in the major groove as T-A-T and C+.G-C triplets. Here we report the successful modeling of novel unnatural nucleosides that recognize the T-A DNA base pair by Hoogsteen interaction. Since the DNA triplex can be considered to assume an A-type or B-type conformation, these novel Hoogsteen nucleotides are tested within model A-type and B-type conformation triplex structures. A triplet consisting of the T-A base pair and one of the novel Hoogsteen nucleotides replaces the central T.A-T triplet in the triplex using the same deoxyribose-phosphodiester and base-deoxyribose dihedral angle configuration. The entire triplex is energy minimized and the presence of any structural or energetic perturbations due to the central triplet is assessed with respect to the unmodified energy-minimized (T.A-T)11 proposed starting structures. Incorporation of these novel triplets into both A-type and B-type natural tiplex structures provokes minimal change in the configuration of the central and adjacent triplets. The plan is to produce a series of Hoogsteen-like bases that preferentially bind the T-A major groove in either an A-type or B-type conformation. Selective recognition of the T-A major groove with respect to the G-C major groove, which presents similar keto and amine placement, is also assessed with configurational preference. Evaluation of the triplex solution structure by using these unnatural bases as binding conformational probes is a prerequisite to the further design of triplet forming bases.  相似文献   

20.
3-Nitropyrrole (M) was introduced as a non-discriminating 'universal' base in nucleic acid duplexes by virtue of small size and a presumed tendency to stack but not hydrogen bond with canonical bases. However, the absence of thermally-induced hyperchromic changes by single-stranded deoxyoligomers in which M alternates with A or C residues shows that M does not stack strongly with A or C nearest neighbors. Yet, the insertion of a centrally located M opposite any canonical base in a duplex is sometimes even less destabilizing than that of some mismatches, and the variation in duplex stability is small. In triplexes, on the other hand, an M residue centrally located in the third strand reduces triplex stability drastically even when the X.Y target base pair is A.T or G. C in a homopurine. homopyrimidine segment. But, when the target duplex opposition is M-T and the third strand residue is T, the presence of M in the test triplet has little effect on triplex stability. Therefore, a lack of hydrogen bonding in an otherwise helix-compatible test triplet cannot be responsible for triplex destabilization when M is the third strand residue. Thus, M is non-discriminating and none-too-destabilizing in a duplex, but in a triplex it is extremely destabilizing when in the third strand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号