首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of isothermal aging on the tensile properties of Cu/Sn–58Bi/Cu soldered joints were investigated. Experimental results show that the scallop-shaped Cu6Sn5 and planar Cu3Sn formed at the interface between solder and Cu substrate during reflowing and aging. The thickness of the intermetallic compounds (IMCs) increased almost linearly with the square root of aging time, and aging at 120 °C yielded a much faster growth of the IMCs layer than that of samples aged at 100 °C. The IMCs growth rate constants were 6.02 × 10?18 and 1.85 × 10?18 m2 s?1 for solder joints aged at 120 and 100 °C, respectively. The tensile strength of the Sn–58Bi/Cu soldered joints decreased slightly with the increasing aging time and temperature. The failure was dominated by the mixed fracturing in both the solder and the Cu6Sn5 grains irrespective of their thermal aging conditions. However, the fracture pattern tended to transform from ductile to brittle with increasing aging time and temperature. The Bi segregation and voids were observed around the Cu/Cu3Sn interface as the long term aging at high aging temperature was carried out, which resulted in reduction of tensile strength of solder joints.  相似文献   

2.
The interfacial microstructures and mechanical properties of Sn–9Zn–0.5Ga–xNd on Cu substrate with aging treatment were investigated. Unlike the previous results, no Sn–RE phase was formed near the interface of Sn–9Zn–0.5Ga–xNd soldered joint after aging treatment at 150 °C for 1200 h. The combined action of Ga and Nd inhibited the formation of Sn–RE phase and resulted in an enhanced reliability of the soldered joint. The shear force of Sn–Zn–0.5Ga–0.08Nd soldered joint after aging treatment for 1200 h was twice the amount of Sn–9Zn joint and approaching the origin as-soldered joint of Sn–9Zn. Further, the fracture type of soldered joint still performed ductile after aging treatment for 1200 h. Synthesized the results of interfacial microstructures, mechanical test and fracture morphologies, Sn–9Zn–0.5Ga–0.08Nd solder has shown great potential to satisfy the increasing reliability requirements in electronics industry.  相似文献   

3.
The interfacial reactions of Sn/Cu–xZn (x = 15 and 30 at.%) solder joints were investigated. Before aging, [Cu6(Sn,Zn)5] and [Cu6(Sn,Zn)5/Cu–Zn–Sn] intermetallic compounds (IMCs) formed at the [Sn/Cu–15Zn] and [Sn/Cu–30Zn] interfaces, respectively. After thermal aging at 150 °C for 80 days, [Cu6(Sn,Zn)5/Cu3(Sn,Zn)/Cu(Zn,Sn)/CuZn] and [Cu6(Sn,Zn)5/Cu(Zn,Sn)/CuZn] IMCs, respectively, formed at the [Sn/Cu–15Zn] and [Sn/Cu–30Zn] interfaces. Increasing the amount of Zn in the Cu–Zn substrates evidently suppresses the growth of Cu3Sn and Kirkendall voids at the solder joint interfaces. Transmission electron microscopy images show the different microstructure of CuZn and Cu–Zn–Sn phases in Sn/Cu–Zn joints. These Cu–Zn phases act to inhibit the growth of Cu6Sn5 and Cu3Sn IMCs. As the content of Zn increased in Cu–Zn substrates, both CuZn and Cu(Zn,Sn) grew significantly. In addition, the growth of the Cu6(Sn,Zn)5/Cu3Sn IMCs approached a reaction-controlled process. The formation mechanisms of the CuZn and Cu(Zn,Sn) phases were probed and proposed with regard to the interfacial microstructure, elemental distribution, and the compositional variation at Sn/Cu–xZn interfaces.  相似文献   

4.
Abstract

The present study was undertaken to investigate the influence of aging temperature on the creep behaviour of Sn–Ag and Sn–Ag–Bi solder alloys at testing temperatures ranging from 333 to 363 K under constant stress of 7·80 MPa. The steady state creep rate was found to increase continuously with increasing aging temperature at all testing temperatures. Results show that addition of Bi to the binary Sn–Ag solder alloy led to a significant increase in the strength and improvement in the creep resistance. The activation energy for the creep process of Sn–Ag and Sn–Ag–Bi solder alloys was found to have an average value of 36 and 45 kJ mol?1 respectively. This might be characterised by diffusion of Ag in Sn. The microstructure of the aged samples for both alloys examined by X-ray diffraction measurements supported the improvement in the creep resistance for Sn–Ag alloy by adding a small trace of Bi.  相似文献   

5.
Sn–Co alloys are promising Pb-free solders, while plating layers and substrates of Ag and Cu are commonly encountered in electronic products. This study examines the interfacial reactions between Sn–0.25 wt% Co/Ag and Sn–0.25 wt% Co/Cu at 180 and 210 °C, with and without current stressing. CoSn3 precipitates are found in the solder matrix in the as-prepared condition. In Sn–0.25 wt% Co/Ag couples, a continuous Ag3Sn reaction phase layer is observed at the interface and Ag3Sn phase particles are dispersed in the matrix, with and without current stressing. When there is a 500 A/cm2 electrical current, the growth rate of the Ag3Sn phase is not affected at either the cathode side or the anode side. However, the passage of an electrical current leads to the formation of needle-like Ag3Sn phase particles in the solder matrix. In Sn–0.25 wt% Co/Cu couples, both Cu6Sn5 and Cu3Sn reaction phases are formed at the interface, with and without current stressing. Cu6Sn5 precipitates, with a higher Co content, are found in the matrix, mostly nucleated on CoSn3 precipitates. When there is a 500 A/cm2 electrical current stressing, all the reaction phase layers are thicker and the anode interfaces are nonplanar. It is observed that there is cracking and that there are discontinuous Cu6Sn5 layers at the interface and that a significant amount of Cu6Sn5 phase in the matrix accompanies 500 A/cm2 electrical current stressing.  相似文献   

6.
Polyhedral oligomeric silsesquioxanes (POSS) nano-particles reinforced Sn–3.0Ag–0.5Cu–xPOSS (x = 1, 3, 5) composite solders were prepared and were reflowed on Cu substrates at 543 K. Then, the solder joints were isothermal aged at 393 K for 24 and 48 h, respectively. Microstructural evolution of the solder joints were observed by scanning electron microscopy and the influence of POSS nano-particles on the solder joint were investigated. The results showed that β-Sn primary phase was refined and the number of grain boundary increased with the addition of POSS nano-particles. The growth rates of intermetallic compounds (IMCs) layer were suppressed by the adsorption affection of POSS nano-particles to the IMCs layer during isothermal aging. Moreover, the dissolution process of the IMCs layer, which was accompanied by with the growth of the IMCs layer, changed the morphology of the IMCs layer. The growth rate and the dissolution rate of the IMCs layer in Sn–3.0Ag–0.5Cu–3POSS/Cu composite solder joint were the lowest.  相似文献   

7.
8.
9.

Cu-modified carbon nanotube (Cu-CNT) was mechanical mixed with Sn-3.0Ag-0.5Cu (SAC305) solder powder to fabricate composite solder. Experiments were carried out on the composite solder to investigate its thermal behavior and mechanical properties. Evolution of interfacial intermetallic compounds (IMCs) and shear fracture behaviors of composite solder joints were explored as well. Differential scanning calorimetry results showed that the addition of Cu-CNT increased the melting point of SAC305. Nanoindentation indicated that the hardness and modulus of composite solder increased with the increase of Cu-CNT content, indicating that the addition of Cu-CNT could improve the mechanical properties of SAC305 solder. SAC-xCu-CNT/Cu (x?=?0, 0.1 and 0.2 wt%) composite solder joints were obtained by reflow soldering, aging experiment was carried out subsequently. The results showed that Cu-CNT as the reinforcement phase of SAC305 solder could inhibit the growth of IMC. The suppression effect was enhanced when the content of Cu-CNT increased from 0.1 to 0.2 wt% in SAC305. The growth rate of the IMC layer of the composite solder joint with 0.2 wt% Cu-CNT was the lowest. Shear tests showed that adding Cu-CNT could improve the shear strength of solder joints and the fracture mode of the solder joint changed from mixed fracture to ductile fracture.

  相似文献   

10.
Polarized light microscopy and electron backscatter diffraction have been used to quantify the number of β-Sn grains and to examine the Sn crystallographic orientation in Sn–Ag–Cu/Cu solder joints, respectively. The effect of solder joint size on the Sn grain features was investigated due to the miniaturization of solder joints. The Sn–Ag–Cu solder joints of different sizes were found to contain only several β-Sn crystal grains and most solder joints were comprised of no more than three Sn grains. The solder joints showed a preferred crystal orientation. The c crystal axis of β-Sn grains tended to be at a small angle with solder pads. Specific orientation relationships were observed to be prevalent between neighboring β-Sn grains. The grain number, crystal orientation and misorientation were independent of solder joint size.  相似文献   

11.
This work was focused on the influence of Ga on the thermal properties, microstructural evolution and interfacial morphology with aging treatment at 150 °C of low-silver Sn–0.5Ag–0.7Cu (SAC) lead-free solder. The melting temperature of the SAC–Ga solder was decreased owing to the low melting point element Ga and the formations of intermetallic compound (IMC) and growth at the interfaces of SAC/Cu and SAC–0.5Ga/Cu were studied for different aging time ranging from 0 to 720 h. The results indicated that for both solders, the thickness of the IMC increased with aging time prolonging. However, compared with the interface of SAC/Cu, the thickness of the interface of SAC–Ga/Cu was obviously suppressed and the growing speed was slowed down, which may be attributed to the decreased activity of copper atoms by Ga addition, so that the SAC–Ga solder showed relatively planar-like IMC instead of scallop-like at the interface.  相似文献   

12.
13.
Intermetallic compounds formed during the liquid–solid interfacial reaction of Sn–Ag and Sn–Ag–In solder bumps on Cu under bump metallization at temperatures ranging from 240 to 300 °C were investigated. Two types of intermetallic compounds layer, η Cu6Sn5 type and ε Cu3Sn type, were formed between solder and Cu. It was found that indium addition was effective in suppressing the formation of large Ag3Sn plate in Sn–Ag solder. During interfacial reaction, Cu consumption rate was mainly influenced by superheat of solder, contact area between solder and Cu and morphology of intermetallic compounds. The growth of η intermetallic compounds was governed by a kinetic relation: ΔX = tn, where the exponent n values for Sn–Ag/Cu and Sn–Ag–In/Cu samples at 240 °C were 0.35 ± 0.01 and 0.34 ± 0.02, respectively. The n values increased with reaction temperature, and it was higher for Sn–Ag/Cu than that for Sn–Ag–In/Cu sample at the same temperature. After Cu was exhausted, ε intermetallic compound was converted to η intermetallic compound. The mechanisms for such growth of interfacial intermetallic compounds during the liquid–solid reaction were investigated.  相似文献   

14.
Electroless Ni–P/electroless Pd/immersion Au (ENEPIG) with ultra-thin Ni–P deposit serve as a potential replacement of traditional ENEPIG surface finish because of its superior electrical performance in flip chip solder joints interconnection. However, the interfacial reaction and mechanical reliability of solder joints in ENEPIG with ultra-thin Ni–P layer is not yet well evaluated. In this study, we investigated the characteristic microstructure of interfacial intermetallic compounds and high-speed impact responses of Sn–3.0Ag–0.5Cu/ENEPIG attachments with 4.8, 0.3, and 0.05 μm Ni–P deposit. ENEPIG with Ni–P layer of 0.3 μm exhibited the eutectic structure dispreading in the solder alloys and layer-type P-rich IMCs at solder/metallization interface, while there was (Cu,Ni)6Sn5 precipitation in the solder but no P-rich IMCs layer formed in ENEPIG with 0.05 μm Ni–P layer. Slower interfacial reaction rate in ENEPIG with 0.3 μm Ni–P layer was attributed to the effect of electroless Ni–P diffusion barrier layer, which would further provide better impact resistivity than that of ENEPIG with 0.05 μm Ni–P deposit. Moreover, breach in P-rich IMCs and underneath (Cu,Ni)6Sn5 patch were observed in ENEPIG with 0.3 μm Ni–P layer. The growth mechanism was closely related to the Ni diffusion from surface finish and element redistribution.  相似文献   

15.
16.
Abstract

To develop low melting point filler metals for brazing TiNi shape memory alloy (SMA) and stainless steel (SS), a series of Ag–22Cu–Zn–Sn (wt-%) filler metals have been studied. Using differential thermal analysis (DTA) analysis, the melting temperatures of Ag–22Cu–Zn–Sn filler metals were determined. The results show that the increase of zinc and tin contents drastically decreases the solidus and liquidus temperatures of the Ag–22Cu–Zn–Sn filler metals and the melting temperatures of the Ag–22Cu–18Zn–Sn filler metals with 5–8 wt-%tin are < 650°C. Metallographic observations indicate that the increase of zinc and tin in the Ag–22Cu–Zn–Sn filler metals helps the formation of eutectic structure and inhibits the formation of α-Ag and α-Cu solid solutions, but the increase of tin also causes the formation of Ag3Sn and Cu41Sn11 brittle compounds. The results of mechanical property tests of the laser brazed joints of TiNi SMA and SS show that the proper increase of zinc and tin in Ag–22Cu–Zn–Sn filler metals is favourable for improving the strength of the laser brazed joints of TiNi SMA and SS.  相似文献   

17.
Abstract

The influence of isothermal aging on the creep behaviour of Sn–9Zn and Sn–8Zn–3Bi solder alloys was studied by impression testing. The tests were carried out under constant impression stress in the range from 90 to 230 MPa at room temperature. Aging affected the microstructure and, thus, the creep behaviour of the materials. The binary Sn–9Zn alloy, with an as cast microstructure characterised by an almost uniform distribution of fine Zn precipitates, was much more creep resistant than the aged condition containing a more sparse precipitate in a softer matrix. In the ternary Sn–8Zn–3Bi alloy, however, isothermal aging enhanced Bi precipitation with almost no change in the distribution and density of Zn particles, the result being an improved creep resistance of the aged material. Irrespective of the processing condition, Sn–8Zn–3Bi showed much lower steady state creep rates than the Sn–9Zn due to both precipitation and a solid solutioning effect of Bi in the Sn matrix. The stress exponents of the as cast and aged conditions were found to be respectively 8·5 and 7·7 for Sn–9Zn and 9·8 and 7·8 for Sn–8Zn–3Bi. These values are in agreement with those determined by room temperature conventional creep testing of the same materials reported in the literature.  相似文献   

18.
The formation and growth of intermetallic compound (IMC) layer at the interface between pure Sn and a Cu substrate during dip soldering and aging were studied. The soldering was conducted at 250 °C using dipping method, followed by aging treatment at 150 °C for up to 10 days. The results showed that the IMC layer flattened with aging duration because the grooves in scallop-like IMC provide a more convenient access for Cu atoms to dissolve and react with solders and previous IMCs. And when isothermal aging was subjected, the growth rate of Cu6Sn5 was lower than that of Cu3Sn due to Cu3Sn growing rapidly with aging time by consuming Cu6Sn5 at the interface of Cu3Sn/Cu6Sn5. Kirkendall voids were observed at Cu3Sn/Cu interface as well as inside the Cu3Sn layer as the Sn/Cu couple was aged at 150 °C for prolonged time, with which the Cu3Sn IMC dominates the interfacial IMCs growth. During solid-state aging, the mean diameter (d) of interfacial Cu6Sn5 grains increased dramatically with the increasing time (t). The relationships between d and t were given to be d = 1.22 t 0.291 for samples formed at 250 °C for 1 min and d = 1.53 t 0.259 for samples formed at 250 °C for 5 min, respectively.  相似文献   

19.
The effects of minor additives, that is, Co and Ni, on the microstructural and mechanical properties of Sn–3.0 mass%Ag–0.5 mass%Cu (SAC305) bulk solder were investigated. The addition of Co and/or Ni resulted in microstructural changes of the SAC305 solder, such as the formation of new intermetallic compounds (IMCs) and the refinement of grain size, as well as the suppression of undercooling. The single addition of Co in SAC305 solder resulted in the formation of CoSn2 IMCs and undercooling suppression, whereas the single addition of Ni accelerated the appearance of rod-shaped (Cu,Ni)6Sn5 IMCs inside the β-Sn dendrites during the solidification process. The dual addition of Co–Ni resulted in refined β-Sn grains and suppression of undercooling, as well as the formation of CoSn2 IMCs. In tensile tests, Co and/or Ni additives had little effect on the tensile strength of SAC305 solder, but obviously suppressed the elongation ratio and reduction of area. During tensile deformation in samples with existing thin plate-like CoSn2 IMCs, micro-cracks or cavities were easily initiated through the interface between CoSn2 and the solder matrix, which was responsible for the decrease of ductility.  相似文献   

20.
The interfacial reactions of Sn–2.0Ag–2.5Zn solder on Cu and Ni–W substrates after soldering and subsequent aging have been investigated in this study. Ni–W alloy layers with tungsten content of 3.0 and 10.0 at.% were electrodeposited on copper substrate. The interfacial micrographs of solder joints prepared at 250 °C for 15 s and aged at 150 °C for 24, 96 and 216 h are shown. Double-layer IMC composed of Cu5Zn8 and Ag3Sn was observed at the interface of Sn–2Ag–2.5Zn and Cu couple, which was compact and acted as a barrier layer to confine the further growth of Cu–Sn IMC. On Ni–W barrier layer, a thin Ni3Sn4 film appeared between the solder and Ni–W layer, whose thickness decreases with the increase of W content. During the aging process, a thin layer of the Ni–W substrate transforms into an amorphous bright layer, and the thickness of amorphous layer increased as aging time extended. Referring to the elemental line-distribution and the thickness of different layers at the interface, the formation of the bright layer is caused by the fast diffusion of Sn into Ni–W layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号