首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
二元无碱驱油体系的室内研究与评价   总被引:2,自引:0,他引:2  
随着三元复合驱技术研究的不断深入, 三元复合驱体系中碱对石油开采过程及地层造成的危害日益凸现。以自制石油磺酸盐NPS-2为表面活性剂, 通过考察不同质量分数的NaCl和石油磺酸盐对大庆采油四厂油水界面张力的影响, 确定了二元无碱驱油体系配方, 并对该体系的应用广泛性和驱油效果进行了评价。结果表明, 从自制石油磺酸盐为表面活性剂, 二元无碱驱油体系合适配方为CNaCl=0.6%~1.2%, CNPS-2=0.1%~0.3%, CHPAM=0.12%. 该二元复合驱配方体系可使油水界面张力降至超低, 全部达到10-3mN/m 数量级, 最低可达10-4mN/m 数量级, 能够避免由碱引起的对地层和采油设备的损害, 具有很高的现场应用价值。  相似文献   

2.
以十六烷基胺、丙烯酸甲酯和二乙醇胺等为原料,经迈克尔加成反应、水解反应及酯交换反应合成新型十六烷基胺无碱表面活性剂,利用红外光谱对产品进行结构表征。对新型十六烷基胺无碱表面活性剂与大庆采油一厂原油45℃下油水界面张力进行研究,其可使大庆油水界面张力达到超低界面张力(10-3mN/m);在与烷基苯磺酸盐复配时,当其质量比为4∶1~5∶1时,复配体系能使油水界面张力达10-4mN/m数量级。  相似文献   

3.
研究了OCS表面活性剂中试产品在强碱NaOH条件下应用于大庆不同原油时的油-水界面张力特性。结果表明,对于大庆采油一厂至四厂的原油,OCS表面活性剂质量分数在0.1%~0.3%、NaOH质量分数在0.6%~1.2%的范围内,油-水界面张力可达到超低(约10~(-3)mN/m数量级),能够满足大庆油田复合驱用表面活性剂使油-水界面张力达到超低的要求。研究结果还表明,聚合物的加入有利于原油-表面活性剂体系间超低界面张力的形成。  相似文献   

4.
特高含水油藏复合驱技术提高采收率研究   总被引:1,自引:0,他引:1  
针对双河油田IV5-11层系特高含水油藏条件,筛选出SP二元复合体系、ASP三元复合体系的优选配方,分别为2000 mg/表面活性剂SH6+1500 mg/L聚合物ZL-II和8000 mg/LNa2CO3+2000 mg/L表面活性剂SH6+1500mg/L聚合物ZL-II,并对比评价了两种体系的热稳定性能、多次吸附性能和岩心驱油效果。实验结果表明,在81℃、7.34 s-1下优选出的SP二元体系、ASP三元体系的黏度分别为74.6mPa·s和46.5mPa·s,与原油间的界面张力分别为3.64×10-3和3.89×10-4mN/m,ASP三元体系与SP二元体系相比,界面张力有一个数量级的下降,黏度下降37%。81℃老化120 d后,APS三元体系的黏度保留率高于SP二元体系,界面张力始终维持在10-4mN/m数量级,较SP二元体系低两个数量级,长期稳定性能优越于SP二元体系。ASP三元体系在与天然油砂重复接触5次以后,界面张力从3.63×10-4mN/m增至4.67×10-3mN/m,仍维持在超低数量级,且非均质岩心驱油效果整体比SP二元体系高3%5%。因此采用三元复合驱技术作为双河油田IV5-11层系在特高含水阶段水驱后大幅度提高采收率的接替技术。经过两年的的矿场试验,区块已经见到较好的增油降水效果。  相似文献   

5.
系统地研究了工业木素磺酸盐与大庆原油形成低界面张力的条件。研究证明 ,单纯工业木素磺酸盐不能与大庆原油形成超低界面张力 ,但与多种活性剂能产生协同效应 ,添加少量石油磺酸盐、碱为助剂配制的工业木素磺酸盐三元复合体系与大庆原油间的界面张力可以达到 10 -3 mN/m~ 10 -4 mN/m数量级。  相似文献   

6.
测定了45℃时非离子表面活性剂SP 1/醇/地层水(矿化度4456mg/L)体系与大庆十厂原油间的界面张力。在5g/LSP 1地层水溶液中按10g/L的浓度加入C1~C4脂肪醇,油水界面张力由2.06×10-2mN/m降至1.12×10-3~5.90×10-3mN/m,按2~15g/L的浓度加入甲醇,界面张力降至10-3mN/m数量级。在甲醇浓度为10g/L条件下改变SP 1加量,在1~10g/L浓度范围产生10-3mN/m数量级的超低界面张力。用悬滴法测定的5g/LSP 1/10g/L甲醇/地层水体系的界面张力,随测定时间延长而下降,25~100min时出现10-3mN/m数量级的超低值,100~120min时降至10-4mN/m数量级。在渗透率分别为25.0×10-3和2.9×10-3μm2的2只岩心上,水驱油后注入SP 1/甲醇/地层水溶液,后续水驱末的注水压力比前期水驱末分别降低63.6%和42.6%。简要介绍了在低渗透注水井朝82 152注入该体系降低注水压力、增加注水量的成功试验。图3表3参5。  相似文献   

7.
用相对分子质量为620×104、700×104(抗盐)、1400×104的聚合物(P620、P700、P1400)和石油磺酸盐表面活性剂、Na2CO3配制弱碱三元复合体系。通过分析萨尔图油田三类油层弱碱三元复合体系在岩心中流动时,不同注入阶段采出液黏度、界面张力、注入压力及阻力系数等参数,得到三元复合体系驱油性质在岩心中的变化规律。结果表明:随着复合体系注入量的增加,表观黏度不断增大;注入后续水时,随着注入量的增加表观黏度升高到最大值后降低,P620、P700和P1400三元复合体系的最高黏度保留率分别为81.53%、17.22%和12.05%。随着驱替过程的进行,采出液界面张力先降低后升高,P700、P620界面张力最低值分别为6.59×10-2和2.38×10-2mN/m。随P700、P620、P1400三元复合体系注入量的增加,注入压力先增大并分别达到最大值2.88、0.60、0.87MPa;注入后续水时,注入压力降低。P620、P700、P1400弱碱三元复合体系的阻力系数分别为75.00、360.00、109.25,残余阻力系数分别为22.25、155.00、28.25。P620弱碱三元复合体系在岩心中流动达到稳定时的注入量最小。图3表2参10  相似文献   

8.
工业木素磺酸盐与大庆原油形成低界面张力的条件研究   总被引:4,自引:0,他引:4  
系统地研究了工业木素磺酸与大庆原油形成低界面张力的条件。研究证明,单纯工业木素磺酸盐不能与大庆原油形成超低界面张力,但与多种活性剂能产生协同效应,添加少量石油磺酸盐、碱为助剂配制的工业木素磺酸盐三元复合体系与大庆原油间的界面张力可以达到10^3mN/m-10^-4mN/m数量级。  相似文献   

9.
本研究了碱(NaOH)/表面活性剂/聚合物三元复合体系与大庆原油相态特征以及碱和聚合物的加入对相行为影响,结果表明NaOH/TRS18/V228三元复合体系与大庆原油能形成WinsorⅢ型体系,原油与中相微乳液的相间界面张力达到了10^-3 ̄10^-4mN/m数量级的超低值;碱和聚合物的加入,增加了能形成WinsorⅢ型体系的表面活性剂浓度和体系矿化度范围以及油水比的范围,并降低了相间界面张力值  相似文献   

10.
磺基甜菜碱BS11的界面特性研究   总被引:2,自引:2,他引:2  
用矿化度3.7 g/L的大庆杏五中回注污水配液,研究了作为驱油表面活性剂的磺基甜菜碱BS11污水溶液与大庆杏五中井口脱水原油之间的界面张力,表明BS11具有很强的降低油水界面张力的能力。在45℃时,0.05-3.0 g/L的BS11污水溶液与原油间界面张力(动态最低值)均达到超低(10^-3mN/m及以下),在45-80℃温度范围,0.1,1.0,3.0 g/L的BS11污水溶液的界面张力维持超低且变化很小。在45℃时,加入1.0 g/L Na2CO3的0.05-3.0 g/L的BS11污水溶液,加入5.0 g/L Na2CO3的0.5-3.0 g/L的BS11污水溶液,加入≤125 g/L NaCl的0.5g/L的BS11污水溶液,加入≤1.5 g/L CaCl2的0.5和3.0 g/L的BS11污水溶液,界面张力均维持超低。图6参10。  相似文献   

11.
以对叔丁基苯酚、甲醛、氢氧化钠、苯酚、浓硫酸、碳酸钠、正溴代烷烃等为原料,经缩聚反应、脱烷基化反应、磺化反应、醚化反应合成了一系列水溶性杯[4]芳烃低聚磺酸钠产品。利用红外光谱、核磁共振氢谱对中间体及产物进行了结构表征;证实了合成中间体和目标产物符合设计的分子结构。用滴体积法测定一系列表面活性剂水溶液25℃时的表面张力,结果表明,1-C4,1-C6,1-C8和1-C10表面活性剂分别能将水的表面张力降至32.06,34.96,42.35和45.35mN/m,临界胶束浓度分别为1.26×10^-1,0.32×10^-3,1.78×10^-3和1.2×10^-3mol/L。对所合成的表面活性剂进行界面张力扫描法测定,结果表明,当1-C4,1-C6,1-C8和1-C10表面活性剂的烷烃碳数分别为8,6,8,6时,表面活性剂的界面张力均达最小值。  相似文献   

12.
通过进行油水动态界面张力测试,系统地研究表面活性剂种类、表面活性剂浓度、水介质矿化度、聚合物及非离子表面活性剂对动态界面张力的影响。结果表明,与传统表面活性剂比12-4-12有较强界面活性,在低浓度下,能将界面张力降低到5×10-3 mN/m。提高表面活性剂浓度,可以缩短达到平衡的时间,但当浓度超过一定值时,继续增加12-4-12浓度,会降低其界面活性。12-4-12最佳浓度为500 mg/L。12-4-12在不同矿化度都表现出良好界面活性,尤其在高矿化度下(25×104 mg/L)最佳。在高矿化度水介质中与常规非离子表面活性剂ANT复配,界面张力可降低到4×10-3 mN/m并稳定在10-3数量级,而与HPAM的复配性能较差,这可能与水介质矿化度过高有关。  相似文献   

13.
原有复合体系评价方法存在诸多问题,如评价方法未定量、不准确、不全面等问题。应系统地提出一套评价指标和评价标准,建立评价体系,有效地判别评价方法的可靠性,以便找出提高复合体系驱油效果的主要因素,进而提高石油采收率。针对大庆油田油层具体情况,研制出相同类型、相同用量、不同分子排布的表面活性剂,实现相同碱、聚合物、表面活性剂用量时,复合体系油水界面张力特征不同。通过岩心物理模拟实验,研究具有不同界面张力特征体系驱油效果,确定界面张力与驱油效率的关系。结合驱油实验结果,得出复合体系界面张力的评价标准,指导复合体系室内配方筛选及注入体系性能优化工作。  相似文献   

14.
针对常规单一表面活性剂存在的不足,研究了高活性FHB-10复合表面活性剂的化学组成与使用性能。其中FHB-10复合表面活性剂配方体系主要由非离子-离子型表面活性剂、增效剂、多元有机醇复合溶剂等组成,其在0.25%的浓度下表面张力<23.2mN/m、界面张力<1.3mN/m;在离子浓度10×104mg/L的高矿化度地层水中或120℃以下的温度条件下对液体的表面活性影响幅度较小,与压裂液、常规酸化液配伍性好。经室内试验表明:通过非离子表面活性剂与离子型表面活性剂的复配效应以及多元化学添加剂的辅助作用,有效地提高了产品在水基液体中的表面活性,并大幅度地降低了材料成本,弥补了单一表面活性剂在成本和使用性能方面存在的缺陷。  相似文献   

15.
胜利油区几大主力油田进入特高含水阶段后,三次采油已成为进一步提高采收率的主导技术。对活性聚合物SAP-2进行了物化性能评价及驱油试验研究。研究结果显示,活性聚合物兼普通聚合物的增稠能力和表面活性剂的洗油能力于一体,注入地层后既可通过改善不利的油水流度比,扩大波及体积,又可通过降低油水界面张力,提高洗油效率。初步认为可用于聚合物驱过的油藏再进一步提高原油采收率,有望改善胜利油区三次采油矿场应用效果,在高含水油田开发后期提高采收率方面有很大的推广应用前景。  相似文献   

16.
仪器串的井下受力状况是由张力仪来监测的,张力仪的性能参数和精度极大程度地影响着操作人员对仪器运行状态的准确判断,设计出不仅能够统一标定各系列张力仪,而且还能模拟动态的仪器受力状况的校验平台极具现实意义,校验台液压动力同时被设计用于仪器的拆卸作业,抱箍的设计模式可避免锤击对仪器产生的伤害,该功能进一步增强了校验平台的实用性。  相似文献   

17.
The effect of salts and different surfactants on the equilibrium as well as dynamic interfacial tension (DIFT) between crude oil and water was investigated. Three different types of surfactants with identical hydrophobic chain length C12: Sodium Lauryl Ether Sulphate (SLES), Dodecyl Trimethyl Ammonium Bromide (DTAB), Polyoxyethylene (23) lauryl ether (C12E23) were used in this study. SLES shows better synergism of salt and surfactant mixture amongst the surfactants studied. The order of synergism of salts with the surfactant observed was MgCl2>CaCl2> NaCl. The results obtained from partition coefficient study show that the addition of salts favours the partition of surfactants into the oil phase hence reduce IFT more effectively. DIFT results reveal that, salt accelerates the surfactant migration towards the interface, hence, reducing the t* value.  相似文献   

18.
采用两性表面活性剂、双子表面活性剂和非离子表面活性剂作为主剂、添加助剂及油相,复配得到了具有低表面张力和低界面张力的微乳液,并对其粒径、热稳定性、改善水润湿性能力、与压裂液配伍性及返排提高率进行评价,得到了具有优异助排效果的微乳液体系。结果表明:该体系粒径分布约80nm,其表面张力平衡值约26.0mN/m,与煤油间界面张力最低可降至0.1mN/m,可改善云母表面润湿性,与其接触角最高改善约70°,返排提高率最高达到了29.72%;微乳液具有一定的耐温性,且与压裂液、添加剂和破胶液配伍性良好。  相似文献   

19.
氨基磺酸型两性双子表面活性剂的合成及性能   总被引:2,自引:0,他引:2  
以十二胺、2-氯乙基磺酸钠为主要原料,采用二氯代的亲水性基团作为联结基,制备了新型氨基磺酸型两性双子表面活性剂DAS-3PA和DAS-8EO;用红外光谱对其结构进行了表征,并对其表面活性和油水界面张力进行了测试。结果表明,两性双子表面活性剂表现出优于传统表面活性剂的表面活性,25℃时DAS-3PA和DAS-8EO临界胶束浓度分别达到6.9×10^-5mol/L和8.0×10^-5mol/L,此时界面张力分别降至25.01mN/m和26.17mN/m;DAS两性双子表面活性剂倾向于吸附在油水界面上,并能有效地降低原油与水的界面张力;DAS两性双子表面活性剂与聚合物复配时表现出较好协同效应,此复配二元体系均能将油水界面张力降低至10^-3mN/m以下。  相似文献   

20.
Abstract

High purity decyl methylnaphthalene sulfonate (DMNS) surfactant was synthesized. The purity of product was determined by HPLC, and the structure was confirmed by IR, UV, and ESI-MS. The surface and oil-water interfacial activities of DMNS surfactant were studied. The effects of concentrations of the surfactant, alkali, and inorganic salt on the dynamic interfacial behavior of crude oil/Shengli Oil Field/surfactant oil flooding systems were studied, and comparitive studies of systems with strong and buffered alkali were also carried out. Results showed that DMNS surfactant possessed great capability and efficiency for lowering solution surface tension and oil-water interfacial tension. The critical micelle concentration (cmc) was 0.02% and the surface tension at this concentration was 31.61 mN.m?1. At proper concentrations of the surfactant, alkali, and inorganic salt, the dynamic interfacial tension between the crude oil of the Shengli Oil Field and the surfactant oil flooding system reached a minimum value of 10?5–10?6 mN.m?1 in a very short time (3–20 min) and maintained an ultra-low value (< 10?2 mN.m?1) for a long period of time (15–87 min). The crude oil/surfactant systems presented satisfactory interfacial behavior. DMNS has great potential to be used in enhanced oil recovery (EOR) with low cost and high efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号