首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用十二烷基苯磺酸钠表面活性剂(DBS)辅助水热法合成TiO2纳米材料,XRD和TEM测试表明,不含DBS的TiO2溶胶水热处理后得到10~20nm锐钛矿型TiO2纳米颗粒;添加DBS后,生成了金红石型TiO2纳米棒.虽然金红石型TiO2纳米棒光电极的染料吸附性能和光电性能均不如锐钛矿型TiO2纳米颗粒光电极,但金红石型TiO2纳米棒漫反射性能较高.可用其制备具有光电转换性能的反射层,这种新型反射层使染料敏化太阳能电池光电转换效率提高了26.14%,而含Ti-nanoxide 300大颗粒TiO2构成的反射层仅能使电池光电转换效率提高11.04%.这种差异的根源在于金红石型TiO2纳米棒不仅具有散射光能力,其本身还可吸附染料进行光电转换.随着反射层厚度的增加,电池短路电流逐步提高.而不吸附染料且无光电转换能力的Ti-nanoxide 300传统反射层则没有这种功能.  相似文献   

2.
王冰  唐立丹 《功能材料》2013,44(13):1868-1870
采用水热合成方法在透明导电玻璃上制备了TiO2纳米棒阵列,利用扫描电子显微镜(SEM)和X射线衍射仪(XRD)等手段对样品进行分析和表征。研究了盐酸浓度对阵列形貌和结构的影响,并针对其影响机理做了进一步的探讨。结果表明,TiO2纳米棒为金红石相,在盐酸与去离子水的比例为1.0时,TiO2纳米棒阵列生长方向垂直于衬底,排列整齐,组织均匀致密。  相似文献   

3.
采用水热法在FTO玻璃上制备了TiO2纳米棒阵列,然后在氨气和氩气的混合气体中退火,得到氮掺杂TiO2纳米棒阵列。XRD及SEM测试结果表明产物均为金红石相,TiO2纳米棒阵列为倾斜生长在FTO衬底上,掺杂氮对产物的结构及形貌没有大的改变。XPS研究结果表明,N原子是以代替O原子的形式渗入TiO2纳米棒。通过光电化学研究,掺杂氮的TiO2纳米棒阵列比TiO2纳米棒阵列的光电流密度增加了66%。  相似文献   

4.
郝彦忠  王尚鑫  孙宝  裴娟  范龙雪  李英品 《功能材料》2015,(2):2135-2139,2143
采用水热法在掺氟的SnO2透明导电玻璃(FTO)基底上制备了金红石型的TiO2纳米棒阵列;然后采用电化学方法在TiO2纳米棒阵列上沉积不同厚度的CdSxSe1-x纳米晶,形成了CdSxSe1-x纳米晶包覆TiO2纳米棒的CdSxSe1-x/TiO2壳核结构;利用扫描电镜(SEM)、能谱分析(EDS)、X射线衍射(XRD)、紫外-可见漫反射吸收光谱(UV-Vis DRS)等对其形貌、结构组成等进行了分析和表征,结合循环伏安法及其吸收光谱确定了CdSxSe1-x纳米晶的能级位置。最后以P3HT/CdSxSe1-x/TiO2复合薄膜材料为光活性层组装成固态纳米结构杂化太阳电池,研究了CdSxSe1-x壳层厚度对该电池光电转换性能的影响,结果表明转换效率最高可达到0.68%。  相似文献   

5.
采用两步溶剂热法在氧化氟锡(FTO)导电玻璃基底上制备了CuInS2敏化TiO2纳米棒阵列复合薄膜光阳极.利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)表征了复合阵列薄膜的晶体结构和表面形貌,同时采用紫外可见吸收分光光度计(UV-Vis)及光电流电压(I-V)曲线研究了CuInS2敏化TiO2纳米阵列薄膜的光学及光电化学性质.研究结果表明,TiO2纳米棒阵列薄膜被CuInS2敏化后在可见光区的吸收有明显的增强.在模拟太阳光照射下(100 mW/cm2),利用这种复合薄膜作为光阳极组装的量子点敏化太阳能电池的开路电压为0.29 V,短路电流密度为0.15 mA/cm2,具有一定的光电转换能力.  相似文献   

6.
以高度有序TiO2纳米管阵列作为光阳极,鸭跖草色素作为敏化剂制备了天然染料敏化太阳能电池。阳极氧化6h制备的TiO2纳米管作为电极的电池的光电转换效率约达0.52%,短路电流为1.53mA/cm2。比较不同管长TiO2纳米管阵列对电池的光电性能的影响。利用紫外-可见光光谱仪研究鸭跖草色素的光吸收性能。利用电化学阻抗谱分析电池的界面阻抗。研究表明适当提高TiO2纳米管长度可以有效提高天然染料敏化太阳能电池的光电性能。  相似文献   

7.
以水热法生长ZnO纳米棒阵列为模板,利用液相沉积法成功制备了TiO2纳米管阵列,并系统研究了液相沉积液浓度和沉积时间对ZnO纳米棒的溶解情况,以及所制备TiO2纳米管阵列的场发射性能。实验结果表明:硼酸浓度越大、沉积时间越长,对ZnO纳米棒的溶解作用越明显,因而越不利于TiO2纳米管的制备。利用该种方法制备的TiO2纳米管长径比和致密性可通过ZnO纳米棒的水热生长条件来控制,本实验制备的TiO2纳米管具有优异的场发射性能,其开启场强为4.60 V/μm,场增强因子为10239。  相似文献   

8.
阳极氧化法制备TiO2纳米管阵列及其光电性能研究   总被引:6,自引:0,他引:6  
采用阳极氧化法在钛片上制备了TiO2纳米管阵列光电极,利用扫描电子显微镜(SEM)和X射线衍射仪(xRD)对TiO2纳米管的形貌和结构进行了表征,详细考察了氧化工艺参数对纳米管阵列形貌的影响,并通过稳态光电响应技术对TiO2纳米管电极的光电化学性能进行了研究.结果表明,在1wt%HF电解液中,控制氧化电压为20V,反应30min后,在Ti表面获得了垂直导向的TiO2纳米管阵列,孔径约为90nm,管壁厚度约为10nm.经600℃退火处理后,TiO2纳米管阵列为锐钛矿型与金红石型的混晶结构,此时电极的光电性能最佳,与TiO2纳米多孔膜电极相比,光电性能大幅提高.  相似文献   

9.
采用水热法在纳米多孔TiO2光阳极表面包覆一薄层SrTiO3,制得TiO2/SrTiO3核壳结构光阳极,并用X射线衍射、扫描电镜、能谱仪、透射电镜及紫外可见吸收光谱对其进行表征。探讨了水热反应时间对TiO2/SrTiO3光阳极组装的染料敏化太阳能电池(DSSCs)的光电化学性能的影响。结果表明:钙钛矿结构的SrTiO3包覆在纳米多孔TiO2光阳极的表面,形成TiO2为核SrTiO3为壳的光阳极;SrTiO3包覆的样品吸收边有红移;与TiO2光阳极相比,水热反应制备的TiO2/SrTiO3核壳结构光阳极组装的DSSC短路电流密度明显增加,5h时光电性能最优,短路电流密度为13.98mA/cm2,开路电压为0.74V,填充因子为0.45,全光转换效率为4.68%,提高了35.65%。  相似文献   

10.
本文通过对所制备的非晶态阳极氧化TiO2纳米管阵列进行水泡、水热以及蒸气热等低温晶化处理,系统考察了低温晶化过程对纳米管阵列形貌、微结构及其模拟太阳光下光电化学性能的影响。研究结果表明:蒸气热处理可促进TiO2纳米管阵列的晶化并保留其管状的形貌特征,最终获得最佳的光电化学性能;水热处理可获得锐钛矿相TiO2,但会使管结构转变为颗粒;水泡处理受水在纳米尺度的管中流动行为的影响,导致管阵列只有管口部分晶化。  相似文献   

11.
采用强碱性水热处理法分别控制第一次水热反应为160℃和200℃,制备出一维纳米管和纳米棒2种形貌的产物,将其作为第二次水热反应的前驱体,考察了第二次水热体系中pH值和温度对TiO2纳米材料的晶相组成及其微观形貌的影响;采用XRD、TEM以及HRTEM对样品进行了分析.结果表明,当以纳米管为前驱体时,除在pH=0的体系中得到了以金红石相为主的单晶纳米棒外,在pH值为2、4和7的条件下均得到了单晶纯锐钛矿相TiO2纳米颗粒.当以纳米棒为前驱体时,在pH=0的体系中得到了金红石相与板钛矿相共存的纳米棒和纳米颗粒混合产物;在pH值为2、4和7的条件下均得到了纯锐钛矿相TiO2纳米棒;当二次水热温度低于180℃时,前驱体没有转化完全,所得产物为前驱体与锐钛矿相TiO2共存的纳米棒;当水热温度为180℃和210℃时,产物为纯锐钛矿相纳米棒.  相似文献   

12.
介绍了染料敏化太阳能电池(DSSC)的结构和基本原理,综述了近年来作为DSSC光阳极的TiO2纳米管、纳米线、纳米棒阵列的制备工艺进展,重点介绍了阳极氧化法制备纳米管和水热法制备纳米线和纳米棒.阐述了通过改进TiO2纳米管提高DSSC效率的几种途径,包括优化纳米管的尺寸、改善纳米管的输运性能、在透明基板上生长纳米管、对纳米管进行表面修饰等.最后展望了TiO2纳米阵列DSSC的研究方向.  相似文献   

13.
采用化学溶液沉积法,在ZnO纳米颗粒膜修饰的FTO导电玻璃基底上,制备了ZnO纳米棒阵列。用X射线衍射仪(XRD)、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)对样品进行表征。研究结果表明所制备的ZnO纳米棒为六方纤锌矿相单晶结构,沿c轴择优取向生长,平均直径约为40nm,长度约为900nm;ZnO纳米棒阵列生长致密,取向性较一致。以曙红Y敏化的ZnO纳米棒阵列膜为光阳极制作了染料敏化太阳能电池原型器件,在光照强度为100mW/cm2下,其开路电压为0.418V,短路电流为0.889mA/cm2,总的光电转换效率为0.133%。  相似文献   

14.
采用水热合成技术,以盐酸、去离子水和钛酸丁酯为反应前驱物,在透明导电玻璃(FTO)衬底上合成TiO2纳米线束阵列.采用X射线衍射(XRD)、扫描电子显微镜(SEM)和高分辨透射电镜(TEM)对其结构和形貌进行了分析.结果表明:在FTO衬底上形成了垂直排列的具有金红石结构的单晶TiO2纳米线束阵列,TiO2纳米线束由φ4~6nm的几十条纳米线聚集在一起,形成宽度约110~210nm、长度约3μm的四方柱状结构.研究了以TiO2纳米线束阵列为光阳极制备的染料敏化太阳能电池的光电性能,其开路电压为0.72V,短路电流密度为2.9mA/cm2,填充因子为0.42,转换效率为0.88%.  相似文献   

15.
赵延亮  王志义 《材料导报》2011,25(16):79-81,107
TiO2纳米阵列(纳米管、纳米棒)结构具有良好的力学性能、化学稳定性以及抗腐蚀性能,在许多技术领域具有广阔的应用前景。采用阳极氧化法在工业纯钛片表面制备出高度有序的TiO2纳米管阵列和纳米棒阵列,研究了电解液浓度和阳极氧化时间对TiO2纳米阵列结构的影响,并对其形成机理进行了初步探讨。结果表明,低浓度的HF酸电解液有利于制备纳米管阵列,高浓度的HF酸电解液有利于制备纳米棒阵列。  相似文献   

16.
采用化学沉积和KOH腐蚀结合的方法,在FTO导电玻璃上制备了ZnO纳米棒阵列。用XRD、SEM、I-V曲线对ZnO纳米棒阵列的结构和性能进行了表征。结果表明:ZnO纳米棒为单晶,属于六方纤锌矿结构。后续的KOH腐蚀有利于ZnO纳米阵列形貌的改变及光电性能的提高,将ZnO纳米棒阵列作为光阳极制备染料敏化太阳能电池,被KOH腐蚀后的ZnO纳米棒阵列的光电转换效率(η)、短路电流(Jsc)、开路电压(Voc)分别达到1.2%、0.006A/cm2、0.557V,与未被KOH腐蚀的ZnO纳米棒相比,光电转换效率提高了1.05%。  相似文献   

17.
通过阳极氧化法在钛箔上制备了TiO2纳米管阵列,在不同热处理工艺下使其晶化.利用扫描电子显微镜(SEM)和X射线衍射(XRD)对TiO2纳米管阵列的形貌和结构进行了表征.结果表明,阳极氧化法制备的TiO2纳米管经450~750℃热处理后为纳米晶结构,平均晶粒尺寸随退火温度升高而增大,相同温度下氮气气氛中热处理的TiO2平均晶粒尺寸小于空气气氛中热处理的TiO2.氮气气氛下退火可拓宽TiO2由锐钛矿型(Anatase)向金红石型(Rutile)结构转变的热处理温度范围,650℃以上退火处理后,TiO2纳米管中掺杂有少量的氮.光照开路电位测试和稳态极化曲线测试结果表明,在氮气气氛中、经650℃退火处理2 h制备的TiO2纳米管阵列电极光电响应性能最佳,此时TiO2为锐钛矿型和金红石型的混晶结构.  相似文献   

18.
利用纳米结构材料作为光阳极制备的染料敏化太阳电池被称为纳米结构染料敏化太阳电池(NDSSC).一般而言,它由纳米结构金属氧化物半导体的光阳极、染料敏化剂,电解质和对电极等几个部分组成.目前,纳米结构光阳极的研究主要集中在如何优化设计和成功制备各种纳米结构的光阳极材料,以改善NDSSC的光电转换性能.本文着重介绍了各种TiO2纳米结构,例如TiO2晶粒薄膜、TiO2准一维纳米结构、TiO2纳米复合物膜层、TiO2核-壳纳米结构、TiO2量子点敏化结构以及串联电池结构等在NDSSC中的应用,并评论了它们最近的主要研究进展.  相似文献   

19.
唐昭芳  陈志刚 《功能材料》2013,44(14):2087-2091
以垂直沉积法制备的聚苯乙烯(polystyrene,PS)胶体晶体为模板,钛酸四异丙酯为钛源,通过浸渍-煅烧工艺制备了具有分层次有序结构的大孔TiO2双层膜,并作为光阳极应用于染料敏化太阳能电池(dye-sensitized solar cells,DSSCs)。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)、紫外-可见漫反射光谱仪和氮气吸附-脱附分析仪等手段对样品进行了表征。结果表明,有序大孔TiO2薄膜较好地复制了PS模板的三维有序结构,且有较大的比表面积。光电性能测试结果表明,与以纯P25薄膜为光阳极的DSSCs相比,有序大孔TiO2双层膜为光阳极能够明显提高DSSCs的光电转换效率,可从4.16%提高到6.08%。该类型分层次有序结构大孔TiO2双层膜在DSSCs中具有重要的潜在应用价值。  相似文献   

20.
通过电化学沉积法以TiO2纳米管阵列(TNTs)为基底制备CdSe/TiO2异质结薄膜。研究TiO2纳米管阵列基底不同退火温度(200,350,450,600℃)对CdSe/TiO2异质结薄膜光电化学性能的影响。采用SEM,XRD,UV-Vis,电化学测试等方法对样品的微观形貌、晶体结构、光电化学性能等进行表征。结果表明:立方晶型的CdSe纳米颗粒均匀沉积在TiO2纳米管阵列管口及管壁上。TiO2纳米管阵列未经退火及退火温度为200℃时,为无定型态,在TiO2纳米管阵列上沉积的CdSe纳米颗粒数量少,尺寸小,异质结薄膜光电性能较差,光电流几乎为零。随着退火温度升高到350℃,TiO2纳米管阵列基底开始向锐钛矿转变;且沉积在TiO2纳米管上的CdSe颗粒增多,尺寸增大,光电化学性能提高。退火温度为450℃时光电流值达到最大,为4.05mA/cm^2。当退火温度达到600℃时,TiO2纳米管有金红石相出现,CdSe颗粒变小,数量减少,光电化学性能下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号