首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究随机风环境下高速列车的气动特性及运行安全特性,提出一种随机风环境下高速列车运行安全的评估方法。基于Cooper理论和谐波叠加法建立任意风向角下随车移动点的脉动风速数值模拟方法,推导随机风作用下高速列车非定常气动载荷的计算公式;建立高速列车系统动力学模型,研究非定常气动载荷作用下高速列车的运行安全特性,获得随机风环境下高速列车安全运行的平均特征风速曲线及其置信区间。计算结果表明,在随机风环境下,高速列车的非定常气动载荷及轮重减载率具有随机特性,且近似服从正态分布;风向角越接近于90°,非定常气动载荷及轮重减载率的波动幅值越大;在相同的风向角下,MCWC随着列车速度的增加而减小;在相同的车速下,不同风向角下的MCWC由小到大的排序为90°、60°、120°、30°、150°。  相似文献   

2.
高速列车表面脉动压力是引起气动噪声的主要根源,研究车体表面脉动压力对噪声控制等方面有重要意义。采用大涡模拟(LES)仿真计算高速列车运行时头车和尾车外流场的脉动压力,利用二进正交db小波将脉动压力分解为能量互不重叠的正交频带,并分析脉动压力在各频带上的能量分布规律。数值仿真结果表明:列车表面脉动压力由平均压力和在平均压力附近上下波动的脉动部分组成,脉动压力在全频带均有分布,且主要集中在低频区域;随着列车运行速度的提高,车体表面脉动压力幅值迅速增大,主要能量向高频区域移动;头车、尾车脉动压力变化趋势相似,且头车脉动压力大于尾车脉动压力。  相似文献   

3.
《机械科学与技术》2019,(11):1790-1796
基于标准κ-ε双方程湍流模型和拉格朗日离散相模型,研究强降雨条件下列车前端计算区域长度的取值。在此基础上,分析不同车速、不同降雨强度下的高速列车气动特性,并与无雨条件下的计算结果进行比较。研究表明,列车前端计算区域长度应达到雨滴运动水平距离的1.5倍。降雨强度增加,列车周围雨滴浓度整体上增大。雨滴越靠近尾车,浓度越大。车速越大,雨滴飞溅程度越大,飞溅的距离越远。在强降雨条件下,列车的整车阻力、头车阻力、中车阻力均随降雨强度和车速的增加逐渐增大;尾车阻力随降雨强度增加而减小,随车速增加而增大。气动阻力变化的百分比随着降雨强度的增加而增大,随着车速的增加而减小。  相似文献   

4.
随机风作用下高速列车的非定常气动载荷   总被引:3,自引:0,他引:3  
为研究随机风作用下高速列车的非定常气动载荷,基于COOPER理论和谐波叠加法计算随高速列车移动的点的脉动风,分析车速和平均风速对量纲一功率谱密度的影响。采用计算流体动力学方法数值计算气动载荷系数随侧偏角的变化规律,研究随机风作用下高速列车非定常气动载荷的计算方法,并推导出非定常气动载荷的概率分布特性。通过仿真分析车速为200~400 km/h,平均风速为10~35 m/s时的脉动风和非定常气动载荷发现,量纲一功率谱密度随车速的增加往高频部分移动,平均风速的变化对其影响较小;平均风速对脉动风速的影响大于车速对脉动风速的影响;当考虑侧偏角的变化时,计算得到的非定常气动载荷的波动增大;采用准定常法和改进准定常法计算得到的非定常气动载荷具有随机过程的遍历性,而采用权重函数法及改进权重函数法计算得到的非定常气动载荷不具有随机过程的遍历性。  相似文献   

5.
为研究高速列车受电弓气动噪声特性,利用大涡模拟方法计算高速列车受电弓表面脉动压力,并将其作为远场声场计算输入;利用Lighthill声学比拟理论计算高速列车受电弓远场气动噪声,并研究其声压级特性、频谱特性及速度依赖规律。计算结果表明:高速列车受电弓气动噪声的声压级在纵向方向上变化较大,最大声压级位于受电弓后方横截面上;声压级在距轨面0.5~5.0 m的垂向方向上变化较小,最大差异在0.5 d B以内;声压级在距轨道中心线7.5~30 m的横向方向上发生衰减,且不同车速下声压级衰减12.0~12.3 d B。通过频谱分析发现,受电弓气动噪声的主要能量分布在100~700 Hz,主要频率随车速增加往高频部分移动;受电弓气动噪声的功率谱密度随测点距轨道中心线距离的增加显著减小,但其主要频率基本不发生变化。受电弓气动噪声声压级随着车速的增加而显著增大,且与车速的对数近似成线性关系。  相似文献   

6.
普通快速列车和动车组由于运行速度和车型的差异,在交会过程中产生的交会压力波与相同车型和车速的动车组交会压力波存在差异,且会车压力波会给交会的普通快速列车和动车组的舒适性和安全性等造成很大的影响,尤其是普通快速列车在以前少有设计的气密性和气密强度等问题都倘未探明,存在潜在风险。基于三维瞬态、非定常的RNG模型,使用计算流体力学软件FLUENT,对普通快速列车时速为140km与动车组时速为250km明线交会时的气动性能进行数值仿真计算。计算结果表明:普通快速列车和动车组交会侧的测点压力在交会过程中会受到两次较大的压力波峰到波谷(或波谷到波峰)的突变;普通快速列车交会侧表面的压力波幅值最大值发生在与动车组鼻尖等高的机车Ⅰ位端司机室与辅助室过渡处;动车组交会侧表面的压力波幅值最大值发生在与普通快速列车底部等高的头车肩部位置;在会车过程中,普通快速列车较动车组受到更大的气动压力作用的影响。  相似文献   

7.
陈世杰  杨帆  黄辉  高慧 《流体机械》2019,47(2):17-22
压力脉动是影响轴流泵装置安全稳定运行的重要因素之一,为明确轴流泵装置叶片区压力脉动的变化规律,基于CFD软件对立式轴流泵装置全流道进行三维非定常数值计算,获得了轴流泵装置叶轮和导叶体区域的压力脉动时域数据,分析了最优工况时各监测点压力脉动特性,以及3个特征监测点的压力脉动随流量的变化规律。结果表明:最优工况时,叶轮进口压力脉动幅值从轮缘到轮毂逐渐减小;叶轮出口压力脉动幅值从轮缘到轮毂先减小后增大;导叶体出口处的压力脉动幅值从轮缘到轮毂先增大后减小。叶轮进口轮缘处压力脉动幅值随流量增大而减小;叶轮出口轮缘处压力脉动幅值随流量增大先减小后增大;导叶体出口轮缘处压力脉动幅值随流量增大而减小。小流量工况时各监测点的压力脉动主频幅值均大于最优工况和大流量工况。计算结果为分析轴流泵安全稳定运行提供了参考。  相似文献   

8.
宋琛  张继业  刘楠 《机械》2016,(6):36-41
为研究高速列车在风沙环境下的气动特性,基于多相流中的欧拉模型理论,建立了高速列车空气动力学模型。数值计算分析了高速列车在0°与90°风向角下的气动特性变化规律。计算结果表明:与无沙情况相比,列车在0°与90°的风向角下,头车的正压区域变大,尾车的正压区域变小,沙尘对头车的冲击最为严重;在0°风向角有沙情况下,列车头车、中间车、尾车的阻力均增大,列车总阻力增大6%左右,头车向下的升力与尾车向上的升力均变大,中间车的升力基本不变;在90°风向角有沙情况下,头车与中间车的阻力变大,尾车阻力变小,列车的总阻力变大,头车、中间车和尾车的升力均减小、侧力均增加。  相似文献   

9.
列车线路试验是研究高速列车气动性能最直接的方法,通常用微型超薄气压传感器测试列车表面压力,然而传感器自身尺寸会对测点处流场产生影响,导致测试结果不准确。针对这一长期被忽略的问题,分别建立单独列车模型和含传感器的列车模型,采用大涡数值模拟方法计算两种模型测点处的表面压力,利用希尔伯特-黄变换提取脉动压力;分析由于传感器自身尺寸带来的平均压力和脉动压力的测量误差,并建立与运行速度的幂函数关系。结果表明:由于传感器自身尺寸影响,测点处平均压力的测量误差绝对值近似与运行速度呈二次函数,脉动压力级改变幅值与速度的三次方呈正比关系,各速度级下总脉动压力级改变幅值几乎相等。将结论用于修正线路试验测试数据,为高速列车气动性能研究提供更准确的数据。  相似文献   

10.
为研究高速列车车内气动噪声特性,利用统计能量分析方法构建包括422个车体结构子系统及170个车内声腔子系统的高速列车车内气动噪声计算模型。通过理论公式计算各个子系统的模态密度和内损耗因子,以及不同子系统之间的耦合损耗因子,通过大涡模拟方法计算各个车体结构子系统的湍流边界层输入激励,进而计算分析高速列车车内气动噪声。计算结果表明:各个车体结构子系统的脉动压力谱随着频率的增加呈现减小的趋势。随着车速的增加,各个频率下的高速列车车内气动噪声均增大。高速列车车内气动噪声的线性计权声压级具有明显的低频特性,而A计权声压级的显著频带范围较宽。司机室声腔A计权声压级的显著频带范围是100~2 000 Hz,乘客室声腔A计权声压级的显著频带范围是50~2 000 Hz。高速列车车内气动噪声的线性计权声压级和A计权声压级均与车速的对数近似呈线性关系。  相似文献   

11.
基于计算流体力学和滑移网格技术,数值模拟了列车通过引起的轨侧脉动压力波。建立列车通过轨侧脉动压力波的计算模型,通过网格独立性检验选取合适的计算网格。研究列车通过轨侧脉动压力波的特征,规律以及四种不同轨道基础形式对列车通过轨侧压力波的影响,包括平地、单线路堤、复线路堤和复线桥梁。研究结果表明:列车头部通过引起轨侧测点的压力峰峰值,比列车尾部通过引起轨测点的压力峰峰值要大;列车通过平地的压力峰峰值最大,通过复线桥梁的压力峰峰值最小;轨侧压力的峰峰值与距轨道中心线横向距离呈负指数关系,不同速度下列车通过引起的轨侧压力峰峰值系数几乎一致。  相似文献   

12.
二维随机风下高速列车非定常气动载荷研究   总被引:2,自引:0,他引:2  
为研究自然风下高速列车的气动载荷特性,基于Cooper理论和谐波叠加法建立考虑自然风纵向脉动分量和横向脉动分量的二维随机风数值模拟方法,通过对比纵向脉动分量和横向脉动分量的模拟功率谱密度与目标功率谱密度,验证随机风数值模拟方法的正确性,并建立二维随机风下高速列车非定常气动载荷的计算公式。数值计算时,列车速度为200~400 km/h,平均风速为10~35 m/s,计算结果表明,随机风具有较大的横向脉动分量,其波动程度略小于纵向脉动分量的波动程度。无论是否考虑随机风速横向脉动分量,高速列车非定常气动载荷均近似服从正态分布。随机风速横向脉动分量对非定常气动载荷的均值几乎没有影响,但使非定常气动载荷的标准差有所增大。  相似文献   

13.
高速列车会车压力波对侧窗的影响   总被引:7,自引:1,他引:7  
高速列车会车时产生的空气压力波动会给交会车辆的侧窗造成很大的冲击,有可能出现破窗事故,给乘客和列车运行带来安全隐患。以三维、非稳态、粘性雷诺时均方程和k-ε两方程紊流模型为基础,采用移动网格的有限体积数值计算方法,仿真分析5种车速(200km/h、250km/h、300km/h、350km/h、400km/h)条件下明线和长隧道内等速会车的动态过程。得到侧窗上完整的会车压力波变化曲线。计算结果表明,明线会车与长隧道内会车产生的压力波对列车侧窗的影响有很大的不同,长隧道内会车时在交会车辆侧窗上产生的气动负压波峰值比明线会车时产生的负压波峰值要大将近一倍,因此不能将明线上会车压力波变化结论外推到隧道内会车情况。以计算结果为基础,分析会车引起破窗的原因和评价侧窗强度的方法。在进行高速列车侧窗设计时,不但要考虑窗玻璃本身的抗冲击强度,还必须考虑列车侧窗的安装强度。相同面积的侧窗,周长大的车窗更有利。  相似文献   

14.
CRH380A是我国自行设计的运行速度可达380km/h的高速列车,它的会车气动特性是否优于其他车型,是否产生更小的会车压力波和更小的会车气动力都还需要比较研究。为此利用数值计算方法,采用三维非稳态、黏性方程与两方程紊流模型,计算分析了CRH380A型高速列车在明线及隧道内会车时各车速下的会车压力波及会车气动力、力矩,并将结果与CRH2、CRH3和ICE列车的会车过程气动载荷比较。结果表明,CRH380A型高速列车具有较好的会车气动特性。  相似文献   

15.
由于高速列车气动载荷是隧道会车时列车行车安全的重要因素之一,而其在实车试验中又难以测量,提出采用基于计算流体力学的数值模拟方法。通过空气动力学仿真获取列车的表面压力分布,对列车压力和粘性力积分合成,得到列车的气动载荷,即阻力、侧向力、升力、侧滚力矩、点头力矩和摇头力矩。全面分析了气动载荷的构成和变化特点,及其在不同速度下的变化特性。结果表明,列车隧道会车时,气动载荷主要是由压力构成;列车在隧道会车时气动载荷出现剧烈波动;气动载荷的幅值与速度呈二次函数的变化规律。研究结果可为列车系统动力学分析提供气动载荷依据。  相似文献   

16.
桥梁上高速列车的强横风运行安全性   总被引:2,自引:0,他引:2  
基于空气动力学和多体系统动力学理论,研究桥梁上高速列车的侧风运行安全性.研究远场气象风速与距轨面4m高、距迎风侧轨道中心线3.8 m远处的高速列车大风监测点的风速的关系;分析侧偏角和桥梁高度对高速列车气动载荷特性的影响;将气动载荷作为外加载荷作用于高速列车动力学模型上,分析桥梁上高速列车的运行安全性,给出高速列车在桥梁上的运行安全域.研究表明,大风监测点处的风速与气象风速成正比关系,且比例系数随着桥梁高度的增加而增大.对于10 m及10 m以上高度的桥梁,当车速一定时,只要大风监测点处的风速相同,高速列车的气动力系数、气动力矩系数和安全指标均与桥梁高度基本无关;对于10 m以下高度的桥梁,当车速一定时,仅由大风监测点处的风速无法确定出高速列车在不同高度桥梁上的气动力系数、气动力矩系数和运行安全指标,必须考虑桥梁高度的影响.当采用大风监测点的风速作为参考风速时,高速列车在低桥梁上运行比在高桥梁上运行偏于危险,应以低桥梁上高速列车的运行安全性来制定铁路沿线不同高度桥梁上高速列车的运行安全域.  相似文献   

17.
列车表面脉动压力是引发列车气动噪声的主要来源,高速列车表面压力测试过程中,难于有效提取出脉动压力,为此,设计了动车组模型表面压力试验测试系统:利用LabVIEW编写数据采集和输出程序以及PID控制程序完成风速控制系统的设计,利用数据采集卡、离心通风机、有机玻璃风道以及动车组模型等完成压力测试系统的设计;提出利用EEMD分解和重构提取出不同速度级下测点处的脉动压力,并得到不同速度级下的脉动压力级波动范围和波动幅度。研究结果表明:该系统可有效测量出动车组模型表面压力;通过提取出不同速度级下的脉动压力,可以看出,随着速度的增大,脉动压力增加;建立的总脉动压力级与速度的关系可为列车的结构设计和减振降噪提供理论指导。  相似文献   

18.
为改善高速列车明线运行时的气动性能,建立高速列车流线型头型的多目标优化设计方法,以高速列车的整车气动阻力和头车最大表面声功率为优化目标,对流线型头型进行多目标自动优化设计。建立三车编组某新型超高速列车的参数化模型,提取头型的五个设计变量,采用ICEM CFD软件脚本文件对列车周围流场区域进行网格自动划分,采用FLUENT软件脚本文件对列车气动力和表面气动噪声源声功率进行自动计算,通过第二代非劣排序的遗传算法(Non-dominated sorting genetic algorithm-II,NSGA-II)对设计变量进行自动更新,实现超高速列车头型的自动优化设计。优化完成后,对优化设计变量与优化目标的相关性进行分析,得到影响优化目标的关键设计变量。结果表明,各优化设计变量与两个优化目标的相关性相同,只是相关系数值不同。经过多目标优化设计,得到一系列的Pareto最优头型;与原型列车相比,优化后列车的整车气动阻力最多减小2.91%,头车最大表面声功率最多减小7.47%。  相似文献   

19.
为研究在横风环境下列车的气动特性,以3辆编组列车作为研究对象,首先结合风洞试验验证Fluent软件数值模拟的可行性,其次对车速为300 km/h下五种横风速度工况进行数值模拟研究。分析结果表明:在车速一定时,随着横风速度的增大,头车受到的侧向力上升且其值最大;中间车侧向力和阻力均有所上升,升力先增大后减小;尾车的侧向力和阻力始终上升,升力先升后降;同时在列车背风侧则会有漩涡不断生成、脱离、融合。  相似文献   

20.
为研究强风雨环境对高速列车空气动力学性能的影响,利用Lagrangian discrete phase model模拟雨滴在空气中的运动,并考虑空气与雨滴之间的相互作用,采用相间耦合方法实现强风雨环境模拟。通过开展强风环境下高速列车空气动力学计算及重力作用下的雨滴降落计算,验证计算模型的准确性。在此基础上,开展不同侧偏角、不同降雨强度条件下的高速列车风-雨两相流计算,研究强风雨环境下高速列车的流场特性及气动载荷特性。计算结果表明:当侧偏角相同时,随着降雨强度的增加,受雨滴撞击的影响,头车迎风侧的正压有所增大,头车背风侧的负压有所增大,列车横向气动性能恶化。强风雨环境下,气动载荷系数随着侧偏角和降雨强度的增加而增大,且近似与降雨强度成线性关系。当侧偏角相同时,气动载荷系数增加百分比随着降雨强度的增加而增大;当降雨强度相同时,气动载荷系数增加百分比随着侧偏角的增加而减小。强风雨环境下,高速列车气动载荷系数可以近似拟合为关于侧偏角和降雨强度的二次多项式,且降雨强度的二次项可以忽略不计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号