首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
为改善高速列车的横风气动性能,建立高速列车流线型头型的多目标优化设计方法,以横风下高速列车的侧力和升力为优化目标,对高速列车流线型头型进行多目标自动优化设计。建立高速列车流线型头型的参数化模型,提取出5个优化设计变量,利用计算流体动力学方法进行高速列车流场计算,并结合多目标遗传算法,实现横风下高速列车流线型头型的自动寻优设计。通过相关性分析,得到影响侧力和升力的关键优化设计变量,并进一步研究关键优化设计变量和优化目标之间的非线性关系。经过多目标优化设计,获得一系列的Pareto最优头型,这些头型的横风气动性能均得到明显改善。同时为保证无风环境下高速列车的基本气动性能不发生恶化,最终筛选出8个Pareto最优头型。对于这8个Pareto最优头型,相对于原始头型来说,横风下的侧力最多可降低3.06%,横风下的升力最多可降低19.60%,无风时的气动阻力最多可降低4.51%,无风时的气动升力最多可降低9.68%。  相似文献   

2.
为改善高速列车明线运行时的气动性能,建立高速列车流线型头型的多目标优化设计方法,以高速列车的整车气动阻力和头车最大表面声功率为优化目标,对流线型头型进行多目标自动优化设计。建立三车编组某新型超高速列车的参数化模型,提取头型的五个设计变量,采用ICEM CFD软件脚本文件对列车周围流场区域进行网格自动划分,采用FLUENT软件脚本文件对列车气动力和表面气动噪声源声功率进行自动计算,通过第二代非劣排序的遗传算法(Non-dominated sorting genetic algorithm-II,NSGA-II)对设计变量进行自动更新,实现超高速列车头型的自动优化设计。优化完成后,对优化设计变量与优化目标的相关性进行分析,得到影响优化目标的关键设计变量。结果表明,各优化设计变量与两个优化目标的相关性相同,只是相关系数值不同。经过多目标优化设计,得到一系列的Pareto最优头型;与原型列车相比,优化后列车的整车气动阻力最多减小2.91%,头车最大表面声功率最多减小7.47%。  相似文献   

3.
张亮  张继业  李田 《机械工程学报》2017,53(22):152-159
为改善高速列车明线运行时的气动性能,基于伴随方法和径向基函数网格变形技术,开展高速列车头型气动优化设计。采用径向基函数网格变形技术,避免列车头型优化过程中的网格重复生成,提高头型优化的效率。通过伴随方法求解目标函数对列车头型的敏感度,无须定义任何的头型设计变量,避免人为指定设计变量对优化结果的影响。将网格变形技术、伴随方法及计算流体动力学(Computational fluid dynamic,CFD)方法相结合,构建高速列车头型优化设计流程,选取整车气动阻力和尾车气动升力为优化目标,对高速列车头型进行多目标气动优化设计。结果表明:伴随方法可以有效地应用于高速列车的头型优化;优化后,在满足约束条件的情况下,列车的整车气动阻力减小2.83%,尾车气动升力减小25.86%;气动阻力减小主要位于头尾车流线型部位,中间车和头尾车车体气动阻力基本保持不变;尾车气动升力减小主要位于流线型部位,尾车车体向下的升力绝对值也有所减小。  相似文献   

4.
为改善高速列车的抗风性能,基于车辆系统动力学和多目标优化理论,建立高速列车动力学参数的多目标优化设计方法,以轮重减载率和轮轴横向力为优化目标,采用多目标遗传算法NSGA-Ⅱ对高速列车的动力学参数进行自动寻优设计,分析优化设计变量与优化目标的相关性,并给出优化后的Pareto最优解。计算结果表明,通过优化高速列车的动力学参数,轮重减载率和轮轴横向力的数值最大可分别降低17.95%和10.26%,多目标优化可以显著改善高速列车的抗风性能。同时,对优化前后高速列车的其他动力学性能进行分析,以保证优化后的动力学参数在改善列车抗风性能的同时不会引起列车运行品质的严重恶化。  相似文献   

5.
高速列车头型气动外形关键结构参数优化设计*   总被引:2,自引:0,他引:2  
李明  刘斌  张亮 《机械工程学报》2016,52(20):120-125
降低列车运行阻力和气动噪声是提升高速列车速度能力和环境适应性的有效手段。针对气动阻力、气动噪声这两项优化目标,利用Isight软件建立了集参数化驱动建模、计算网格划分、气动计算、优化分析等步骤的高速列车新头型气动性能自动优化设计流程,运用基于多目标遗传算法NSGA-II的优化设计方法,对鼻尖高度、排障器前端伸缩量、转向架区域挡板倾角等关键设计变量进行了优化设计以及与气动阻力和气动噪声的相关性分析,在此基础上提出了综合性能较佳的新头型气动外形。通过计算结果可知,① 鼻尖高度对整车阻力和头车表面最大声功率均为正相关关系;② 转向架区域隔墙倾角对整车阻力和头车表面最大声功率影响的相关性最大;③ 通过优化转向架区域隔墙倾角可有效降低该处气动噪声的表面声功率。  相似文献   

6.
研究随机风环境下高速列车的气动特性及运行安全特性,提出一种随机风环境下高速列车运行安全的评估方法。基于Cooper理论和谐波叠加法建立任意风向角下随车移动点的脉动风速数值模拟方法,推导随机风作用下高速列车非定常气动载荷的计算公式;建立高速列车系统动力学模型,研究非定常气动载荷作用下高速列车的运行安全特性,获得随机风环境下高速列车安全运行的平均特征风速曲线及其置信区间。计算结果表明,在随机风环境下,高速列车的非定常气动载荷及轮重减载率具有随机特性,且近似服从正态分布;风向角越接近于90°,非定常气动载荷及轮重减载率的波动幅值越大;在相同的风向角下,MCWC随着列车速度的增加而减小;在相同的车速下,不同风向角下的MCWC由小到大的排序为90°、60°、120°、30°、150°。  相似文献   

7.
针对目前汽车气动减阻中基于工程师经验的试凑法所存在的盲目性和低效性,以及气动优化设计中车身曲面难于参数化等问题,将自由变形(Free form deformation,FFD)技术引入汽车气动减阻优化设计中,为减阻优化设计提供一种快速、有效的参数化方法。当前的研究以某款轿车模型为研究对象,根据优化的拉丁方试验设计构建样本空间,并采用FFD方法对各样本点模型进行参数化;通过CFD仿真获得各样本的气动阻力系数;采用Kriging模型构建近似模型;利用多岛遗传算法求解近似模型的最优值;根据优化结果重新构建最优模型并采用CFD计算其气动阻力系数。计算结果显示优化后轿车模型的气动阻力系数减少了4.09%,表明FFD方法在汽车气动减阻优化中有很好的应用效果。  相似文献   

8.
横风下高速列车的非定常气动特性及安全性   总被引:1,自引:2,他引:1  
为研究横风下不同路况(平地、路堤、桥梁)运行时的高速列车非定常气动特性及安全性,基于空气动力学和多体系统动力学理论,建立高速列车空气动力学模型和车辆系统动力学模型。采用分离涡模拟(Detached eddy simulation,DES)方法,计算在横风下运行速度为300 km/h列车的周围流场,风速为17.1 m/s,风向与列车运行方向垂直,得到各路况运行时高速列车车体所受非定常气动力的时域特性、频域特性及列车周围非定常流动结构。根据高速列车整车试验规范,以脱轨系数、轮重减载率、轮轴横向力和轮轨垂向力为安全性指标,分析不同路况下列车的运行安全性。结果表明,横风中列车所受气动载荷存在明显的非定常性,各车辆的气动载荷功率谱密度存在明显峰值,气动载荷主频集中在5 Hz以内;复线路堤背风侧运行列车的安全性最差,其次为复线桥梁迎风侧、复线桥梁背风侧、复线路堤迎风侧、平地。  相似文献   

9.
强风雨环境下高速列车运行安全特性   总被引:1,自引:0,他引:1  
于梦阁  刘加利  李田  张骞 《机械工程学报》2021,57(20):172-180,193
为确保高速列车在强风雨环境下安全运行,结合EULER-LAGRANGE方法和计算多体动力学方法,系统地研究风雨环境下高速列车的气动特性及运行安全特性。基于非球形雨滴,建立高速列车空气动力学计算模型,并验证计算模型的准确性,进而计算强风雨环境下作用于高速列车的气动载荷。建立高速列车车辆系统动力学模型,计算强风雨载荷作用下的高速列车运行安全特性。研究结果表明,在不同风速下,高速列车的侧力、升力、侧滚力矩及摇头力矩均随降雨强度的增加而增大,且与降雨强度近似成线性关系,对于点头力矩,当风速较小时,点头力矩随降雨强度的增加而增大,而当风速较大时,点头力矩随降雨强度的增加而减小。与单纯的强风环境相比,降雨使得高速列车的运行安全特性进一步恶化,在不同风速下,高速列车脱轨系数、轮重减载率、倾覆系数及轮轴横向力均随降雨强度的增加而增大,特别是当风速接近于临界风速时,降雨对高速列车运行安全特性的影响显著。当降雨强度为500 mm/h时,由不同运行安全指标确定的高速列车安全运行的临界风速降低2.3~4.2 m/s。研究结果可为高速列车在风雨环境下的安全限速提供参考。  相似文献   

10.
《机械科学与技术》2016,(11):1715-1720
针对复杂机械装备多学科多目标优化设计成本高、周期长等问题,提出一种近似模型与并行加点策略相结合的多目标优化方法。基于Kriging模型,将添加更新样本点定义为同时考虑Pareto最优解和预测误差的动态多目标优化问题,应用改进NSGA-II优化算法和极大极小距离准则,确定最优的并行更新样本点,在提高Kriging模型精度的同时实现多目标优化。测试函数验证和实例结果表明,该方法可有效提高复杂系统多目标优化效率,同时获得收敛性和分散性俱佳的Pareto最优解。  相似文献   

11.
To explore the need for a roof apparatus for an electrical device, such as a pantograph cover or additional cover, the total aerodynamic drag of HEMU-430X, which is a high-speed train developed in South Korea with a maximum speed of more than 400 km/h, was experimentally analyzed using wind-tunnel testing. Experimental models were selected to a 1/20-scale, 5-car HEMU-430X model and three types of pantograph covers (A streamlined type and two wedge types), along with an additional cover. The experimental Reynolds numbers were 370000–620000. The aerodynamic drag of each car was simultaneously measured using load cells. First, the aerodynamic drag of each car without any roof apparatus was analyzed as the baseline model. Second, according to the variations in the three types of pantograph cover configurations, the aerodynamic drag of each car with pantograph covers was compared with the aerodynamic drag of the basic model. Third, the aerodynamic drag of each car with a pantograph cover and additional cover was compared with the results of the baseline model and baseline model with the pantograph cover. Finally, the aerodynamic drag due to the roof apparatus for an electrical device was investigated and analyzed.  相似文献   

12.
Under the influence of crosswinds,the running safety of trains will decrease sharply,so it is necessary to optimize the suspension parameters of trains.This paper studies the dynamic performance of high-speed trains under cross-wind conditions,and optimizes the running safety of train.A computational fluid dynamics simulation was used to determine the aerodynamic loads and moments experienced by a train.A series of dynamic models of a train,with different dynamic parameters were constructed,and analyzed,with safety metrics for these being determined.Finally,a surrogate model was built and an optimization algorithm was used upon this surrogate model,to find the mini-mum possible values for:derailment coefficient,vertical wheel-rail contact force,wheel load reduction ratio,wheel lateral force and overturning coefficient.There were 9 design variables,all associated with the dynamic parameters of the bogie.When the train was running with the speed of 350 km/h,under a crosswind speed of 15 m/s,the bench-mark dynamic model performed poorly.The derailment coefficient was 1.31.The vertical wheel-rail contact force was 133.30 kN.The wheel load reduction rate was 0.643.The wheel lateral force was 85.67 kN,and the overturning coef-ficient was 0.425.After optimization,under the same running conditions,the metrics of the train were 0.268,100.44 kN,0.474,34.36 kN,and 0.421,respectively.This paper show that by combining train aerodynamics,vehicle system dynamics and many-objective optimization theory,a train's stability can be more comprehensively analyzed,with more safety metrics being considered.  相似文献   

13.
段丽丽  高广军 《机械》2014,(7):18-21
采用结构网格对计算区域进行离散,采用DES湍流数值模拟方法,研究高速列车尾部横向、竖向或斜向地安装扰流板对车的气动性能影响,找出扰流板安装的合理方向。研究结果表明:安装横向或竖向扰流板后,尾部的气动阻力变大,升力减小,而安装斜向扰流板后,尾部的气动阻力与升力均减小。因此,列车尾部扰流板的合理方向为斜向安装。  相似文献   

14.
For a high-speed train, the same power car is used as the first car and as the last car in a reverse direction simultaneously. Therefore, the previously optimized nose shape, considering only the first car position, is not well adopted in the last car position of a front-rear symmetric train in view of the aerodynamic drag. The three-dimensional nose shape optimization of a front-rear symmetric train is conducted to minimize the total aerodynamic drag of the entire train using CFD. The 3-D nose model is constructed by the vehicle modeling function with the optimized area distribution to minimize the micro-pressure wave. It is revealed that the total aerodynamic drag of the optimum shape for the entire train is reduced by 23.0% when compared to that of the conventionally optimized shape only for the first car of the symmetric train.  相似文献   

15.
杨易  聂云  范光辉  徐永康 《中国机械工程》2013,24(24):3396-3401
以凹坑型非光滑车身尾部气动特性为研究对象,探讨了一种将参数化建模、CFD计算和数值寻优方法相结合的非光滑表面气动减阻优化方法。通过分析凹坑型非光滑单元矩形阵列的气动减阻效果,以矩形排布和非光滑单元体尺寸作为优化对象,采用拉丁超立方抽样方法进行试验设计选取样本点。利用CFD仿真得到样本点的响应值,根据响应值建立了Kriging近似模型。在验证了近似模型可信度的基础上,以近似模型为基础进行全局优化。优化结果表明:车辆尾部凹坑单元体矩形排布最大减阻率可达7.9%,较大程度地改善了空气动力学性能。研究结果为汽车非光滑表面减阻和优化提供了理论依据和参考。  相似文献   

16.
为研究低压环境下真空管道高速列车的气动特性,建立低压环境下真空管道高速列车空气动力学计算的流体模型、数学模型和数值模型,研究管道压力(1.01×103~1.01×104 Pa)、阻塞比(0.2~0.7)和列车速度(600~1 000 km/h)对真空管道高速列车的阻力系数、气动阻力和气动热效应的影响。计算结果表明,在低压(1.01×103~1.01×104 Pa)环境下,真空管道中的空气流动可以采用连续介质模型描述,真空管道高速列车的绕流流场采用三维可压缩Navier-Stokes方程描述。高速列车的摩擦阻力系数远小于压差阻力系数,压差阻力系数和气动阻力系数基本上与管道压力和列车速度无关,而主要依赖于阻塞比。高速列车的气动阻力与管道压力近似呈线性关系,与列车速度近似成平方关系,且随着阻塞比的增加而增大。列车表面的最大温度基本上与管道压力无关,而主要由列车速度和阻塞比决定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号